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Synchronizing Caches
Busy-Wait Locking, Waiting, Unlocking

The issues in oroadcasi synchronizaiion schemes for caches are analyzed, and new
methods for busy-wait locking, waiting, and unlocking are introduced. The lock/unlock
scheme allows busy-wait locking and unlocking to occur in zero time, eliminating the
need for test-and-set; while the wait scheme eliminates all unsuccessful retries from the
switch, and allows a process to work while busy-waiting. These methods for busy-wait
locking, waiting, and unlocking also integrate processor atomic read-modify-write
instructions and programmer/compiler implementations of atomic, busy-wait-
synchronized operations under the same mechanism, and improve the performance of
both approaches to atomic operations. The evolution of broadcast schema is also
analyzed in detail.

Sleep-Wait and Service-Request Queuing
Paradigm for High-Contention Atomic Operations

Fast queuing operations on priority queues, including the sleep-wait operations P and V,
can be executed by VLSI hardware, whose structure, function, and management are
presented. This introduces a paradigm for VLSI smplementation of high-contention
atomic read-modify-write operations. The paradigm will virtually eliminate switch
traffic in the execution of such operations, as well as speed up the operations themselves
tremendously. :




Abstract

Synchronizing Caches
Busy-Wait Locking, Waiting, Unlocking

A cache may serve several purposes. In a shared-memory system in which caches serve
as local memories for writable data, read/write sharing of data among the caches must
be synchronized. This is an instance of the problem of read/write synchronization of
replicated data, which entails two tasks: serializing conflicting access requests, and pro-
viding the latest version of the requested data. A cache synchronization scheme for
broadcast systems is presented, introducing efficient methods for busy-wait locking, wait-
ing, and unlocking. The lock/unlock scheme allows busy-wait locking and unlocking to
occur in zero time, eliminating the need to fetch busy-wait lock bits from memory
independently of the data in order to test-and-set them. The wait scheme eliminates all
unsuccessful retries from the switch, and allows a process to work while busy-waiting.
This method for busy-wait locking, waiting, and umnlocking also integrates processor
atomic read-modify-write instructions and programmer/compiler implementations of
atomic, busy-wait-synchronized operations under the same mechanism, improving the
performance of both approaches to atomic operations. Many options are possible for a
cache synchronization scheme for a broadcast system, and will be selected according to
the constraints of cost, performance, and off-the-shelf parts that will be used. The
options introduced in the literature are compared and contrasted in a presentation of the
evolution of broadcast synchronization schemes.

Sleep-Wait and Service-Request Queuing
Paradigm for High-Contention Atomic Operations

Fast queuing operations on priority queues, including the sleep-wait operations P and V,
can be executed by VLSI hardware, thereby eliminating the need to busy wait for access
to high-contention process queues and service-request queues. The structure, function,
and management of the hardware queues are presented, along with their interface to the
processors and the switch. The queuing hardware is relat}vely simple, and is suitable for
VLSI design, due to the replication of cells and the simple control. In addition, this
introduces a paradigm for VLSI implementation of high-contention atomic read-
modi fy-write operations. The paradigm will virtually eliminate switch traffic in the exe-
cution of such operations, as well as speed up the operations themselves tremendously.
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A.l. Motivation

What is the most important issue in computer architecture today?
(I invite the reader to pause a moment and offer an answer.)

One of the most important issues is how to design multiprocessor systems that can real-
ize the speedup potential of many processors. The major problem is how to arrange for
the processors to coordinate, or synchronize, their activities efficiently, so that the over-
head of coordination is not greater than the benefit realized by the greater concurrency.
To be specific, suppose that a problem can be arranged to run faster on a multiprocessor
than on a uniprocessor, but when the execution time necessary to make these arrange-
ments is counted, the total execution time is not appreciably less than the execution time
on a uniprocessor. In this case, the expense of the multiprocessor does not pay off.

Shared-Memory Architecture. Project Aquarius at Berkeley, lead by Professors
Alvin Despain and Yale Patt, is interested in building high-performance systems. We
believe that performance and cost are best served in a multiprocessor system by taking a
shared-memory, or-processor-to-memory, architecture to its limit, including as many pro-
cessors as possible, before moving at a higher level into a message-passing, or processor-
to-processor, architecture (Gajski, Peir 1985). Performance is better served because
memory accesses in a processor-to-memory architecture tend to be more tightly timed
(with respect to mean and variance) than memory accesses in a processor-to-processor
architecture, though I do not believe that these correlations are logically necessary.

At the other extreme, a shared-memory, single-bus architecture offers a low-cost
approach to building a multiple-microprocessor system, so this kind of architecture is
rapidly gaining in importance (Bell et al. 1885).

In view of these two distinct interests, it is useful to identify architectural features that
improve the coordination, or synchronization, of processors in a shared-memory architec-
ture. A designer of either kind of system, then — high performance or low cost — will be
able to select the features that best serve their interest.

Prolog. Project Aquarius is investigating the design of a high-performance, multipro-
cessor system to execute logic programs, currently Prolog (Dobry, Despain, Patt 1985).
We have built a uniprocessor system to execute Prolog and are now designing a mul-
tiprocessor system. In order to realize the concurrency potential in logic programs, we
are planning to implement predicates (procedures) as lightweight processes — all execut-
ing in the same virtual address space for a given program (Kepecs 1985). Furthermore,
predicates will be producing and consuming many variable values, and they will need to
synchronize this activity.

In short, we are planning for many medium-grained, lightweight processes. We expect a -




typical program to have a large number of these processes, and the processes will be gen-
erating much synchronization activity, including frequent sleep and wakeup operations.
Rumor has it that synchronization activity may occur every 10 or 20 memory references.
So we are devoting a great deal of effort toward making synchronization fast. Hence this

report.

A.2. Method

Architectural Support for Operating Systems. Professor John Ousterhout
addresses the topic of architectural support for operating systems this way.

My advice to computer architects who want to help operating system designers is
this: Don’t do us any favors!

(CS252 guest lecture, U.C. Berkeley, October 14, 1985) Ousterhout is responding to the
bistory of computer system architecture, which is cluttered with examples of complex,
slow, inflexible features implemented for operating system ‘support.’” Many of these
features were even advocated by operating system (OS) designers themselves, unable to
foresee the full, negative implications the features would eventually have on the develop-
ment, use, and performance of the system.

Ousterhout states that in an environment where security is not of prime concern, the
only real help that computer architects can offer OS designers is to make critical, high-
frequency operations fast. Furthermore, these hardware operations should be relatively
primitive operations — for use by OS designers to implement higher-level operations and
policies of their choosing.

To illustrate, Ousterhout favors reference bits on main memory pages (omitted from the
VAX), bardware management of cache synchronization, primitive synchronization opera-
tions such as test-and-set, and fast data transfer for I/O and memory-to-memory
transfer. On the other side, measurements of standard programming environments, such
as the Mesa environment at Xerox PARC, indicate that process switching is relatively
infrequent in these environments, while procedure calls are very frequent. So the speed
of the latter, not the former, should be improved by hardare targeted for that environ-
ment.

In short, the two goals for architectural support for OSs (in a non-high-security environ-

ment) are these.

® Performance: A hardware feature is justified only if it speeds up a high-frequency
operation.

® Primitives: A hardware feature should be relatively primitive, so that it can be used
in a variety of ways by the OS designers to create higher-level operations and policies
of their choosing. :




In this report I introduce three such primitives for performance, and I propose an imple-
mentation for a primitive suggested by Ousterhout.

® (Cache lock state — for broadcast switch

c Allows zero-time busy-wait locking and unlocking, eliminating the need for fetch-
ing and test-and-setting a lock bit independently of the data it protects

8]

Integrates processor atomic read-modify-write instructions and
programmer/compiler implementations of atomie, busy-wait-synchronized opera-
tions under the same mechanism
e (Cache busy-wait register — for broadcast switch

c Eliminates all unsuccessful retries from the switch

c Allows a process to work while busy waiting
e Hardware queue (VLSI circuit) — for any switch

C Virtually eliminates switch traffic in the execution of such operations, as well as
speeding up the operations themselves tremendously

o Can be used for both sleep-wait (P and V) and service-request queues (e.g., a
floating point or I/O processor)

c Can be used for both FIFO and priority queues

Introduces a paradigm for implementation of any high-contention atomic read-
modify-write operation

e High-speed memory transfer operation

C Transfer from one memory unit to another at the clock rate, where a memory
unit is a main memory unit, a cache, or an I/O-processor buffer

The first three primitives not only improve the performance of high-frequency, synchron-
ization operations, but also integrate otherwise disparate operations under the same
mechanism, thereby reducing the cost of the design and the hardware. The fourth,
data-transfer, primitive was suggested by Ousterhout as greatly needed by OS designers,
so I offer two possible implementations of it, one for maximal speed and one for lower
cost and easier use.

Technology. A watchword among computer scientists is to track the trends of technol-
ogy and take advantage of what technology is or will be offering. To be specific, one of
the key conclusions today is that memory is relatively inexpensive, so it should be used
liberally in designing computer systems.

My own vision, in this vein, is that MOS VLSI design technology is available, and is get-
ting better fast, so hardware circuits such as sleep/priority queues — which would be
unreasonably expensive if designed using standard TTL or ECL chips — are now feasible
and can be strategically employed to implement high-contention atomic read-modify-
write operations.

Snapshot. This report offers a snapshot of rapidly developing ideas, but I have

attempted to stop the action and capture a clear picture for the reader. Further, the




major points in nearly every section are presented as bullets in that section. Conse-
quently, the key features of the snapshot can be identified by paging through, aiming for
the bullets.

A.3. Overview

I currently identify three major, low-level synchronization issues for shared-memory
architecture.

e Synchronization of caches
e Implementation of busy wait
¢ Implementation of sleep wait

Synchronization of Caches. Smith (1984) characterizes the issue this way:

The solution of the multicache consistency problem for large numbers of processors is
one of the most important current problems in computer architecture, and it is one
of the major barriers to effective multiprocessing.

Specifically, processes in a shared-memory system communicate by taking sole access to
some shared data object and writing it, leaving information in memory for another pro-
cess to read. One example, typical of Prolog and dataflow, is the producer/consumer
relationship. In this case, one process produces a value, say a variable binding, for
another process, and that process, in turn, reads the value and uses it. The second pro-
cess may also report back to the first process, in which case it also writes a shared-
variable. Another example is the management of service-request queues, where one pro-
cess leaves a service request for another process in the latter’s request queue. The latter
eventually reads the request and services it. This will typically occur among processes
running on different processors. For example, a process running on a program inter-
preter may send a service request to a floating-point processor or an I/O processor.

In this context, the processor caches must correctly implement the read/write sharing of
data that is requested by the software. Briefly, cache synchronization consists of this:

® Read/write sharing of replicated data among the caches’

Busy Wait, Sleep Wait. If the wait for sole access to a shared object is expected to
be short, the process will busy wait. That is, it will continue to run while waiting,
though as we will see, this does not mean that it must continually test a bit while wait-
ing. On the other hand, if the wait is expected to be long, the process will be switched
out of the processor and will sleep wait on a process queue, allowing another process to
run on that processor. However, if the hardware in a multiprocessor system does not
itself implement P/V (or equivalent) operations, then by default the software must
implement sleep wait using busy wait. In this case, a queue-manager process, instead of
invoking hardware-queue facilities, will busy wait for access to a software-implemented
process queue; and when it gains access, it will enqueue or dequeue a process, as
appropriate. If semaphores are used, they will be part of the queue descriptor. In brief,




sleep wait as a high-level concept must be implemented using busy wait at a lower level
if the hardware does not implement P/V operations. In this case, sleep wait does not
actually avoid busy wait. Rather the hope is to reduce the time spent executing wait
operations by busy waiting for access to a sleep-wait queue rather than for access to the

target data.

This identifies the two reasons for using busy wait.

® A situation where busy wait is less costly than sleep wait

e A system where busy wait is necessary in order to implement sleep wait

Keep in mind that in either case, the atomic operation may be implemented by a single

processor instruction or by a section of code, though the second case presents an
extremely large bite for a single instruction, and will probably be implemented by several

software routines.

High-level Issues. High-level synchronization issues address the content of the syn-
chronization operations themselves (Gajski, Peir 1985). I will not discuss these issues,
except to cite the sharing due to a producer/consumer relationship and due to service-
request queues, as mentioned.
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B.1. General Concepts in Cache Synchronization

B.1.1. Purpose of Caches 11
B.1.2. Read/Write Syunchronization 14
B.1.3. Broadcast 15

B.1.4. Placement of Atoms in Blocks 17

This section will develop the general concepts underlying cache synchronization. We will
first look at the purpose of caches, then move on to the concept of read/write synchroni-
zation and consider the hardware role in the synchronization of caches. Next we will
consider the role of broadcast in cache synchronization and the way a cache may handle
irrelevant requests that come via the switch. Finally, we will look at the implications
that the write policy for shared data — write-back vs. write-through to other caches —
has on the placement of atoms in memory blocks.

B.1.1. Purpose of Caches

A cache may serve several purposes in a computer system, including these:
® High-speed memory

Local memory — in a multiprocessor system

Busy-wait locking/waiting — in a broadcast multiprocessor system

High-speed memory-to-memory transfer
Switch mediation — especially in a broadcast multiprocessor system

High-Speed Memory. In a system with just one processor accessing memory — a sin-
gle CPU and no I/O processors — the cache is the high-speed component of the memory
hierarchy external to the CPU (Figure 1). Wilkes (1965) was one of the earliest to dis-
cuss this concept (Censier, Feautrier 1978; Denning 1970). The concept, which he called
‘slave memory,’ carried the notion that its management would be simple enough to be
implemented in hardware and would thus be fast. N

Local Memory. In a shared-memory system with several processors that access
memory — CPUs, I/O processors, etc. — a cache is connected to a processor through a
shared switch or through a private path (Figures 2,3). If connected through a shared
switch, the cache serves only as the high-speed component of the memory hierarchy.
But if connected through a private path, the cache also serves as local memory for the
processor, reducing the processor’s need to compete with other processors in accessing
the switch and main memory. That is, if a block of data is fetched into the cache and
subsequently read several times, only the first read requires fetching from main memory
(or another cache) through the switch. An early implementation of this function was in
the two page-table caches under the MULTICS operating system. Consistency of the
caches was maintained by invalidating both caches when the page table was written by




either of the two processors (P. Denning, personal comm. 1985).

A critical issue here is the policy for updating other caches and main memory with the
contents of a dirty block. An update scheme can be thought of as a variation or combi-
nation of the following two basic policies.

e Update-by-word (write-through): A cache updates main memory and other caches
that have the block (if there are any) with a word whenever its processor writes to
the cache. On e write:

o Update main memory
o Update other caches having the block (if any)

o Update-by-block (write-back): A cache updates another cache only when the latter
requests the block. Memory may be updated at the same time, or else only when the
cache must purge the block due to its own activity. When a processor writes to the
cache, copies of the block in other caches are invalidated, rather than updated. On a
write:

o Do not update main memory
o Invalidate other caches having the block (if any)

Another typical update scheme derives from uniprocessor systems and non-broadcast
multiprocessor systems: update main memory (as in write-through under a uniprocessor
system), but invalidate other caches (as in a non-broadcast system, where updating other
caches cannot be done simultaneously).

I have introduced ‘update-by-word’ and ‘update-by-block’ as alternate names to ‘write-
through' and ‘write-back’ in order to draw attention to what I feel is the key difference
between the two policies, namely, the granularity of the update. We will see the space
and time implications of this granularity.

Specifically, update-by-word, or write-through, serves the function of local memory better
than update-by-block if a relatively small number of writes to a block are made before it
must be purged or be read by another cache. Whereas update-by-block, or write-back,
serves local memory better if a relatively large number of writes to a block are made
before it is purged or read by another cache. If a block }has n words, the tradeoff point
will be expressed as some fraction of n writes.

To illustrate, if exactly n writes will be made to a block before it is purged or read by
another cache, it is better to transfer the block as a whole, rather than in single-word
chunks. This is because the switch traffic due to switch arbitration (if not overlapped)
and due to transfer initiation, as well as the delay to those processors whose caches are
updated, will be n times smaller (on average) under update-by-block, while the actual
bus-transfer time will be the same. A stochastic model can be devised, allowing estima-
tion of which update policy will tend to be better for a particular system.!

1 Technical pote concerning update-by-block: A block of shared data is probably first fetched for read
privilege by a cache on a processor read, so if it is present in another cache at that time, a subsequent ac-

—_ 12 —




Update-by-block for blocks that are not shared among caches appears to offer substantial
reduction in bus traffic and improvement in performance over update-by-word, according
to Norton and Abraham (1982) and Smith (1982). For blocks that are shared among
caches, Archibald and Baer (1985) provide evidence of the opposite — that update-by-
word is better than update-by-block. However, their model of how sharing is done will
not occur under a properly managed update-by-block policy, as will be shown in Section
B.1.4.

Busy-Wait Locking/Waiting. A new function introduced in this report is to have
the processor data caches in a broadcast system implement busy-wait locking and wait-
ing. Under this scheme, in order to lock a data object, a processor does not execute
test-and-set on a data bit. Instead, the first block of the object is fetched with write
privilege into the cache (if the block is not already locked by another cache), and its
state is set to locked (Figure 4). If another cache requests the block, the cache in which
it is locked reports that fact, and records that another processor is waiting (Figure 5).
The requester cache, then, stores the block address with busy-wait status, and its proces-
sor waits for notification from the cache when the block has been successfully fetched

and locked.

When the processor holding the lock is done with the privileged operation, it unlocks the
locked block and, if there was another processor waiting, broadcasts the unlocking to all
caches (Figure 8). At the next bus arbitration, all of the caches holding the block
address in busy-wait status arbitrate for the bus. The winner fetches the block with
write privilege, locks it, and notifies its processor. The other waiting caches continue
waiting, but do not access the bus with unsuccessful retries, since they lost the critical
arbitration. The details of locking and waiting will be discussed in Section B.2.2.

High-Speed Memory-to-Memory Transfer. Another new function introduced in
this report is to have a processor cache implement high-speed transfer from one location
in memory to another. As mentioned in Section A.2, this is motivated by Ousterhout'’s
statement that operating system designers greatly need a fast memory-transfer operation.
A cache can be used to implement this by reading a block from one location of memory
into its assembly register and then immediately storing the block into another location of
memory (Figure 7). The cache simply needs to understand a command from the proces-
sor to do this, and then, in a multiprocessor system, follow its synchronization protocol
in reading and writing the block. The intelligence required of the cache is not great.
Further details are given in Appendix 1.

Switch Mediation. The two preceding purposes point to an interesting trend that is
just beginning to be explored.

cess will be required for each block to claim write privilege (invalidate the other copies) at the time that
the block is written. Consequently, the update-by-block policy will usually incur two switch accesses, not
just one, per block of shared data. A stochastic model for evaluating the two update policies will include
all such relevant details.

—_ 13 —




o Switch mediation: Give to the cache (instead of to other processor‘hardware) func-
tions that entail switch interactions in cases where more efficient use of time, space,
or hardware will result.

This strategy is especially useful under a broadcast system, where the cache has

hardware devoted just to monitoring the bus (or buses) and for responding to requests

that are broadcast there. The example of efficient busy-wait locking and waiting was
depicted above.

Another very similar example is that of priority preemption, discussed in Section C.1.2.
In this case, each cache (or other processor hardware) monitors the bus for the priority of
any process that is placed on a ready queue. If the priority of a currently running pro-
cess is lower than the latter priority, the monitoring hardware arbitrates for the bus, as
in efficient busy-wait, and if it wins — in this case, due to lowest priority — it interrupts
its processor. The process running there is switched out, and a process is loaded from
the appropriate ready queue.

B.1.2. Read/Write Synchronization

Logical Aspects. As mentioned, cache synchronization consists of coordinating the
read/write sharing of replicated data among the caches. Read/write sharing of repli-
cated data entails three logical aspects.

® Atomicity: sole access for writers

o Concurrency: shared access for readers

® Replication: getting the latest version of the data upon access

A writer is given sole access so that its action appears atomic, all-or-none, to any subse-
quent reader or writer. (A writer may also read.) Sole access is necessary for primitive
objects, while ordered access, analogous to pipelining, is possible for higher-order objects.
Readers are given shared access in order to maximize concurrency in accessing the data.
Finally, upon gaining access privilege to the data, the latest version must be fetched,

wherever it may be — in any cache or in main memory.
.

Implementation Requirements. These three logical aspects of read/write synchroni-
zation reduce to two implementation requirements.

® Serialize conflicting access requests: write-read and write-write conflicts

® Provide the latest version of the data: wherever it may be

The first requirement must be met in order for the second to have meaning.

Atomicity, Atoms. The concept of atomicity (realized through sole access to primitive
objects for a writer) is central to the problem of read/write synchronization, and can be
subdivided into two distinct types: that implemented by hardware and that imple-
mented by software. Specifically, in order for software to implement an atomic opera-
tion (insuring sole access for a writer), the hardware must provide some primitive atomic

— 14 —




operation for the software to use. This can be as simple as writing a single bit, as in
Peterson’s algorithm (Peterson, Silberschatz 1985, p. 332). But for the sake of speed, the
hardware will probably provide at least a test-and-set operation or atomic swap, allowing
the software to insure sole access without so many bit reads and writes as otherwise
needed. In this context it becomes convenient to define two types of atomic (writable,
shared) data objects.

e Hard atom: data object is atomized (access conflicts are serialized) by the hardware

e Soft atom: data object is atomized by the software

Hardware Role. It falls to the hardware, then, to serialize conflicting access requests
only for hard atoms. This situation occurs when two different processes on two different
processors simultaneously attempt to access the same hard atom (Figure 8). Providing
the latest version of the data, on the other hand, is required not only for writable, shared
data (hard and soft atoms), but also for writable, unshared data when a process runs on
one processor and then goes to sleep and is subsequently awakened on another processor
(Figure 9). In both cases, the latest version of the data must be gotten when the process
accesses the data.

The synchronization of caches, then, reduces to the following two requirements, each
having the occasions shown.
o Serialize conflicting access requests: hard atoms only
& Two different processes on two different processors access the same hard atom.
® Provide the latest version of the data: all writable objects
o Two different processes on two different processors access the same writable,
shared data (hard or soft atom).

O One process on two different processors accesses the same writable, shared or
unshared, data.

B.1.8. Broadcast®

Full Broadcast. Broadcast is a hardware tool that'is useful in the high-speed syn-
chronization or coordination of a group of devices, such as caches or processors. It is
most simply implemented with a bus for each broadcaster, carrying the broadcaster’s
message to all devices. Hence it requires n buses where the capability of n simultaneous
broadcasts is desired. Furthermore, in its full sense broadcast requires full associativity.

® Full broadcast — full associativity: A request is broadcast to all devices, since it is
not known which devices may be able to service the request. Every device evaluates
if it can service the request and responds appropriately.

2 The innovative idea motivating the next section was to implement a full-broadcast cache scheme in 2
parallel switch, and was conceived by Professor Al Despain. George Adams and Steve Melvin offered me
further perspective on the potential of the average case — as opposed to the worst case.
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This stands in contrast to partial broadcast, in which a proper subset of devices may be
addressed — only those that can service the request — so as not to interfere with the
remaining devices. Unless otherwise qualified, broadcast will henceforth refer to full
broadcast throughout this report.

For n simultaneous broadcasts, every device considers all requests at the time that a set
of broadcasts is initiated, and decides which, if any, it will service. With regard to
caches in particular, every cache that has control of one of the n buses at broadcast time
will broadcast its request to all other caches; and every cache will consider all of the
requests (except its own). '

More specifically, in accessing all caches simultaneously, broadcast provides high-speed
implementation of the two hardware tasks in cache synchronization.

o Serialize conflicting access requests — hard atoms only: Broadcast simultaneously
accesses all caches that have a copy of the hard atom.

® Provide the latest version of requested data — all objects: Broadcast accesses the
cache having the latest version of the block.

At every switch setting, each cache that has access to a memory module broadcasts its
request (read/write/invalidate/etc. concerning a block address in that module) to all
other caches. So for a switch allowing n requesters, there must be n buses, one for each
requester's broadcast. Every cache will consider all n requests (except its own) and will
decide which, if any, it will service.

In the worst case, all of the requests, e.g., n block fetches, will resolve to the same cache
(Figure 10). The complexity of the cache will allow it to service no more than a few
simultaneous requests, say one or two, however, so the other requesters will have to try
again later. This is similar to the worst case for accessing main memory itself: in the
worst case for main memory (ignoring the caches), all requests go to the same module.
The switch will allow no more than one or two requests to the same module, however, so
the other requesters will have to try again later. In short, the success of the parallel
switch in accessing main memory, as well as the success of n-fold broadcast in accessing
the caches, depends entirely on the average case. The parallelism should be implemented
only if stochastic and simulation models indicate that thé average cases of interest can
realize the concurrency offered by the parallel switch and memory.

Also note that under n-fold broadcast, the degree of associativity for each block frame
(represented in the switch directory) would be n, allowing n simultaneous addresses to
be compared. (n = min( max # requesters, # processors - 1)) The scheme allowing
maximal concurrency, considered by Rudolph and Segall (1984) and by Despain (personal
comm. 1984), would give each processor n smaller caches, one for each memory module.
A weaker ilternative would be n cache directories, one for each memory module, where
hits are arbitrated. But the latter is functionally equivalent to having a cache directory
with n-way associativity for each block frame, as just described.

The principles of broadcast will be illustrated throughout this report by a system with a
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single bus rather than a system with a parallel switch. The reasons are that broadcast in
a single-bus system is more feasible in terms of cost; it is easier to understand, and to
illustrate; and it has been implemented in single-bus systems.

Irrelevant Requests. The disadvantage of full broadcast is that a device, in particular
a cache, will be bombarded with irrelevant requests that arrive via the switch. A cache
cannot service such a request when the relevant block does not have the appropriate
status there. This bombardment can interfere with a processor’s use of its cache. Conse-
quently, under full broadcast, a cache is given two control units, one for processor regis-
ters and one for switch requests; it is also given a separate directory for handling
requests from the switch (Goodman 1983), or else the cache directory is given dual-
ported read capability (Borriello et al. 1985).

Another approach to the problem of irrelevant requests is that of partial broadcast, in
which a list of all relevant caches is kept in main memory for each memory block (Cen-
sier, Feautrier 1978). The list is a bit vector indicating the caches in which the block
resides. So when a request is broadcast by a memory module, this presence list also sent
to all caches simultaneously, on the data lines of the switch, and each cache determines if
the request is relevant simply by checking to see if its bit is set. However, disadvantages
of this scheme are that memory is more complicated, both in terms of block structure
and control, and performance is substantially lower since all inter-cache transactions
must be mediated by main memory. For example, if a cache simply purges a clean
block, it must still access main memory so that its bit in the block’s presence list is
cleared. In addition, this scheme does not lend itself to extension of more caches, since
the block in main memory and the switch datapath must be enlarged, if they are too
small. (The latter is probably large enough, though, namely four or eight bytes.)

B.1.4. Placement of Atoms in Blocks

Another issue in systems in which data caches serve as local memories is the placement
of atoms in memory blocks, which are the unit of cache management. The unit of
main-memory management may be variable-size logicak units (segments) or fixed-size
physical units (pages) or a combination (Denning 1970). The same decision presents
itself in cache management, although the speed-cost tradeoff is viewed with heavier bias
toward speed, following Wilkes' original concept, and has resulted in strictly fixed-size
units (blocks). Fixed-size units are simpler, and hence faster, to place, and it is simpler
to locate specific cells within them. And since spatial proximity or locality generally
holds, block-based designs are more useful than word-based designs.
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The placement of atoms in blocks, then, emerges as a critical concern. The appropriate
strategy depends on the update policy — update-by-block or update-by-word.

e [Under update-by-block (write-back): An atom should begin at a block bou: iry, and
any memory block on which it resides should be devoted to it; unfortunately, internal
fragmentation will result.

o Under update-by-word (write-through): Atoms can be placed together in blocks, so
should be placed to improve locality of reference, if possible, as well reduce internal
fragmentation.

Just the same, in both cases it is desirable to fit an atom entirely on one block, if possi-
ble, so that a block fetch will not occur while the lock is locked and thereby prolong the
locking time. This will tend to generate internal fragmentation if block size is large rela-
tive to atom size.

More specifically, under an update-by-block policy, when a cache obtains sole access to an
atom on a memory block, it simultaneously obtains sole access to access the rest of the
data on the block. Consequently, if another cache desires access to the rest of the data
while the first cache desires access to the atom, the two access requests will conflict and
will be serialized, needlessly reducing concurrency. In the worst case, the two respective
processors will work on two different atoms in the same block, and the block will be
thrashed from cache to cache, as each cache, in turn, fetches the block for sole access
(Figure 11). It follows, then, that under an update-by-block policy, an atom should
begin at a block boundary, and any memory block on which it resides should be devoted
entirely to it.3 Archibald and Baer (1985) show through simulation that an update-by-
word policy indeed performs better than an update-by-block policy when the latter
causes a block to be thrashed from cache to cache.

However, this placement policy will tend to cause internal fragmentation of blocks,
worse if block size is large relative to atom size. The effect of fragmentation on cache
space is to waste part of a block, thereby increasing contention for cache space, which
will be worse for smaller caches (given a particular block size). In this age of switch
bottlenecks and relatively inexpensive memory, however, the worst effect will be on per-
formance, since an entire block must be fetched in order to obtain an atom on it,
thereby increasing switch traffic and, if the processor must wait for the entire block to
arrive, increasing the processor wait.

The performance cost of internal fragmentation can be reduced by fetching only part of
the block, namely a fixed-size sub-block transfer unit. Each transfer unit for a block
would have a valid bit and a dirty bit, allowing independent fetching and flushing,
respectively. Studies have shown that the concept of sub-block transfer unit improves
performance in the access of unshared data (Smith 1982; Goodman 1983; Hill, Smith

3 This is true unless one can show that for specific atoms of interest, such contention would be small,
and that the complexity of implementing the exception is worth the cost. Appendix 4 also shows that
under 2 non-broadcast scheme, the blocks of a soft atom must be devoted entirely to the atom to insure
correctness — otherwise flushing one atom can overwrite the other in main memory.
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1984) Hill and Sinith offer extensive data showing the tradeoff between bus traffic and
miss rate: as the size of the transfer unit increases, approaching the block size, the bus
traffic increases but the miss rate decreases. Note, by the way, that the worst internal
fragmentation will occur for single-bit atoms, in particular, test-and-set bits. However,
the new locking method introduced in this report eliminates the need for test-and-set
bits, thereby eliminating the space and performance cost of this method of busy-wait
locking and unlocking.

Update-by-Block (Write-Back) vs. Update-by-Word (Write-Through). The
issue of update-by-block vs. update-by-word now acquires new connotations: the issue
should be evaluated for unshared and shared data separately, and for the transfer unit
size rather than the full block size (if the two are different). The evidence cited in Sec-
tion B.1.1 shows that update-by-block significantly reduces bus traffic for unshared data,
which implies that the number of writes to a block tends to be significantly larger than
the tradeoff point. This advantage will not be so great for shared data, however, if
atoms tend to be small relative to block size. But with transfer units smaller than block

size, it may be possible for update-by-block to regain an advantage over update-by-word. .

In short, it is necessary to determine the size that hard and soft atoms will tend to be
(hard atoms will tend to be smaller than soft atoms) and to determine their relative fre-
quency and how many writes each will tend to get. Based on this, the appropriate
transfer-unit size for shared data can be determined and compared to the size desired for
unshared data. If the two are close enough, then update-by-block will be appropriate for
both shared and unshared data. Otherwise, update-by-word will be appropriate for
shared data, as in the DEC Firefly and the Xerox Dragon (reported in Archibald, Baer
1985).
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B.2. Broadcast Systems for Cache Synchronization
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B.2.2. Protocol in Action 22
B.2.3. Protocol Evolution 35

As mentioned in Section B.1.3, broadcast will be considered in the context of a single-bus
system, for simplicity. First we will look at the necessary components of a broadcast
protocol, then we will turn to the states and mechanics of the new version introduced
here. Next we will consider efficient busy-wait locking and unlocking and will analyze
problems with implementing the lock state, and will provide solutions. We will then look
at efficient busy wait, a new method using a busy-wait register, as well as other methods.
Finally we will retrace the evolution of broadcast protocols implemented under an
update-by-block (write-back) policy, considering the schemes of Goodman (1983), Frank
(1984), Papamarcos and Patel (1984), Katz et al. (1885), and the present.

B.2.1. Protocol Components

A broadcast cache-synchronization protocol must include the following components.
¢ Requests for a processor to give to its cache

¢ Requests for a bus master (cache or processor) to broadcast on the bus

o Responses of a cache to the processor and bus requests

o Responses of main memory to the bus requests

o States and state transitions for a cache block

A cache synchronization protocol also includes three basic request-response sequences,
along with states and state transitions for a requested block.

Request-Response Sequences. The request-response sequences are the following.

® Processor request to cache, no bus access needed: A processor makes a request to its
cache, and the cache services the request without needing to access the bus.

® Processor request to cache, bus access needed: A processor makes a request to its
cache. The cache needs to access the bus in order to service the request, so it arbi-
trates for the bus, and when master, broadcasts its request on the bus. All other
caches and main memory respond appropriately, one of which provides the latest ver-
sion of the data, if requested. The cache then replies to its processor.

® I/O-processor request to bus: An I/O processor bypasses its cache (if it has one) and
broadcasts an I/O request on the bus. All caches and main memory respond
appropriately, one of which provides the data, if requested.

Keep in mind that in order to reduce traffic on the bus, it will be assumed that the cache
policy for updating main memory will be update-by-block (write-back) rather than
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update-by-word (write-through), as discussed in Sections B.1.1 and B.1.4. Just the same,
as pointed out in Section B.1.4, several parameters of a system must be estimated to
determine if update-by-block will be as effective for shared data as it is for unshared
data. Also, in order to reduce contention for the caches generated by irrelevant requests
under the full broadcast scheme, it will be assumed that each cache has dual directories
or a dual-ported-read directory, as discussed in Section B.1.3.

States. We will consider the following eight states for a block in a cache, and Section
B.2.3 will show how the states in other protocols relate to these eight.
Invalid

Read
Read, Source, Clean
Read, Source, Dirty

Write, Source, Clean
Write, Source, Dirty

Lock, Source, Dirty
Lock, Source, Dirty, Waiter

The following is a key to the word meanings, which will be clearly illustrated by exam-
ples in Section B.2.2.

Invalid Meaningless '

Read Read-only privilege (shared-access privilege — for multiple readers)
Write Read and write privilege (sole-access privilege)

Lock Read and write privilege, locked by the cache

Source Source of latest version of block

® Location of clean/dirty status for the block
® When the block is fetched by another cache, the source provides it and
its current clean/dirty/lock status
® When purging the block, the source flushes it if dirty

Dirty/Clean Block was/not written by some processor since read from memory into the
cache system K '

Waiter Another processor is waiting for the block to be unlocked

Keep in mind that the goal is to enumerate promising possibilities. Although eight states
are of interest here, not necessarily all states will be implemented in a particular sys-
tem.

First, if the system is built from off-the-shelf parts, the capabilities of those parts may
limit the implementation. The most critical component, here, is probably the bus: the
capability of the bus can greatly limit the designer of a cache synchronization protocol,
because it may not allow them to signal all of the codes that they would like to. The
most notable example is probably that of Goodman (1983). Goodman designed his cache -




protocol for the original Multibus, and this bus does not give the user a way to explicitly
signal block invalidation while fetching a block. As a result, Goodman used the write
operation on the bus to signal invalidation (J. Goodman, personal comm. 1985).

Second, the cost of implementing each state must be weighed against the improvement in
performance that it will offer in the system at band. To illustrate, consider the use of
the clean source states (read and write) as opposed to having just dirty source states. If
a cache is the source of a block, it will provide that block when another cache requests
it. Such a request to a cache will reduce the cache’s availability to its own processor,
thereby creating contention for the cache — contention between the processor requests
and the bus requests. Since the block is clean, the latest version also resides in main
memory, from where it could alternatively be fetched. However, suppose that a fetch
from memory is much slower than a fetch from another cache. Then if the requester
must hold onto the bus while waiting (because the address/data phases for a read are not
split), the bus contention generated by fetching from memory can be worse than the con-
tention for the cache generated by fetching from the cache. Also, if the requesting
processor’s cache does not implement prefetch, then a fetch from memory, as compared
to a fetch from another cache, will entail a much longer wait for that processor — even
if bus traffic is minimized by splitting the address and data phases.

In short, the clean source states are implemented only if fetching from another cache is
sufficiently faster than fetching from main memory. If this is not true, then the read-
source-clean state should be eliminated, using the plain read-state instead, and the
write-source-clean state should be changed to write-clean.

B.2.2. Protocol in Action

The state transitions will be illustrated with figures and a table now, clarifying the
behavior of the caches and the rationale behind the state features. The full details of the
processor requests, cache responses, and bus commands are deferred to Appendix 2.
Throughout the discussion, the inventors of each feature will be cited.
b )

Figures. The request-response sequences shown in the figures illustrate the interaction
of the processors, caches, and memory. Keep in mind that the last cache to fetch a
block becomes its source, and provides the block when the block is next requested by
another cache (unless the source purged the block in the meantime).

No Source. Figures 12 and 13 show that if there is no source cache for the block, even
if the block is present in another cache, the block is provided by memory. Furthermore,
the requester cache assumes read/write/lock privilege for the block if the processor’s
request is read/write/lock, respectively. But if the request is for read privilege, any
cache that has the block signals hkit; otherwise the requester will assume write privilege,
as described in the next paragraph. Under the Papamarcos and Patel (1984) scheme,
any cache that has the block (that signals hit) is a potential source. These caches then
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arbitrate and the winner becomes the actual source. The two approaches will be com-
pared in Section B.2.3, Feature 8.

Figure 14 shows that if the request is for read privilege and the block is not present in
another cache, on the other hand, the requester assumes wrile privilege, so that if its
processor subsequently writes the block, a bus access will not be required in order to
obtain write privilege. The main use of this feature is in fetching unshared data.
Papamarcos and Patel (1984) introduced this feature, and Goodman has suggested using
it as it is used here (J. Goodman, personal comm. 1985). Alternatively, as will be dis-
cussed in Section B.2.3 (Feature 5), fetching unshared data for write privilege could be
determined statically (Katz et al., 1985).

Source. Figure 15 shows that there is a source cache for a block, the source provides
the contents of the block, if requested, along with the clean/dirty/lock status of the
block. The presence of this status on the bus signals the presence of a source cache.
Figure 16 shows that if the requester cache already has a valid copy at a processor write,
it only requests write privilege, not the block itself.

Censier and Feautrier (1878) suggested the idea of direct cache-to-cache transfer in the
context of a system without full broadcast. While Goodman (1983) implemented cache-
to-cache transfer in the context of realizing the rich capabilities of full broadcast.

I/O Transfer. An I/O transfer is the result of a request made by a processor that
desires to have data transferred into or out of the memory-cache system. The processor
has designated the memory area and, if the data is shared with other processors, has syn-
chronized the request with the other processors. Consequently, if an I/O processor is
reading or writing a block of data, no other processor is writing the data, and no proces-
sor has the data locked in its cache (except in the case of bugs).

In executing an input operation, an I/O processor will simply invalidate the block in all
caches as it writes to memory, while in executing an output operation, the I/O processor
will fetch the block for write privilege, thereby invalidating the block in all caches.4

For the sake of speed, if an I/O processor has a cache, 1t should not use the cache as an
intermediary in an I/O operation, but instead should transfer directly between the bus
and its private buffers. In this case, the I/O processor’s cache must respond like any
other cache in the system, providing the block if necessary, as well as invalidating it. So
either the I/O processor should have its own separate interface to the bus, independent
of its cache, for use in I/O transfers, so that its cache will respond as usual to the bus
requests. Or else the I/O processor should have two special read and write commands
for its cache, signaling I/O read and write, as opposed to normal read and write. The
second design may add substantial complexity to the cache, both in terms of control and

4 Another possibility is not to invalidate, and to update the caches on input. But the performance gain,
if any, may be too small to warrant the cost of extending the protocol.




datapaths, but the first requires a separate interface just for 1/0.

By the way, the reason that an I/O processor will probably have a cache in a multipro-
cessor system is that its processes must synchronize with processes on other processors.
and it will probably be simpler and more efficient to do so using synchronized access to
shared memory, rather than hardware signals. In this scenario, an I/O processor would
receive service requests from a service-request queue, and would reply to the requests
after servicing them, say by moving a sleeping process to a ready queue.

Efficient Locking. Figure 17 illustrates how busy-wait locking is efficiently executed.
The first block of the atom is fetched for write privilege and locked until the entire
operation is done. Conflicting access requests are serialized by the bus when a block is
locked, and the cache supplies the target word as on a read instruction. Further, as
shown in Figure 19, the unlock can occur at the final write to the block. So the lock
instruction is a special processor read instruction, and the unlock instruction may be
implemented as a special write instruction. An unencoded way of doing this is to devote
a separate processor line to the function, which will be interpreted by the cache as lock
on a read and unlock on a write.

If another cache attempts to fetch the atom during this time, it will request the firs¢
block and find it locked, and the locker cache will record that another cache is waiting,
using the lock-waiter state (Figure 18). This will only require accessing the bus directory
of the cache in which the block is locked since lock-waiter, as well as lock, status needs
to be maintained only in the bus directorv. Consequently, the access will be very fast
and will not interfere with the processor’s use of its cache — in contrast to the fetching
of an actual data block containing a test-and-set lock bit. The requester cache, then,
enters the block address in a special busy-wait register in the cache, thereby setting the
stage for efficient busy wait.

In short, locking involves the lock and lock-waiter states.
® Lock state: The first block of the atom is fetched and locked in the cache until the
operation is done.

o Lock-waiter state: An unsuccessful request from another cache for a locked block
changes the state from lock to lock-wailter.

Process Switching. Under the above protocol, if a process holding a busy-wait lock were
to be switched out, it would have to be loaded back into the same processor because that
is where its lock is. However, this is not a problem for the following reason.

Under any locking scheme, especially busy-wait locking, it is important to preclude
the switching of processes (or threads of control) while a lock is held, in order to

5 An option here is to implement hint read. In this case, a cache can fetch a word from a locked block
in another cache, and pass the word on to its processor. Setting of the busy-wait register, that is, waiting
at all, could also be made optional, if desired.
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avoid prolonging the time for which other processes may have to wait for access to

the atom.
This is achieved by disabling the appropriate interrupts (not all traps), by not requesting
I/O in the atomic section of code, and by avoiding page faults while executing the
atomic section. Page faults are avoided by having the compiler insure that no atomic
section or hard atom crosses a page boundary. Or else, in the case of a process queue
with dynamically-allocated entries, the descriptor and the entries should be memory
resident — as they are in Unix, where the entries are process control blocks (Peterson,
Silberschatz 1985; Denning, Dennis, Brumfield 1881). This also gives another reason for
disabling certain interrupts: if a process queue, like a ready queue, is locked and an
interrupt handler would require accessing that queue, th> handler would be unable to
gain access.

The lock/unlock instructions are actually lock-disable and unlock-enable, each taking an
interrupt-mask, as well as an address and a register operand. The lock-disable instruc-
tion disables interrupts only if the lock is obtained, and the proper use of these instruc-
tions is insured by the assembler or compiler.5

Purging Locked Block. There is a problem with the lock-state scheme in a cache whose

vanish. So for a cache that is not fully associative, a lock bit should be implemented for
the first block of the atom. It will either be a hardware tag bit on each memory block,
or else a bit in the first cell of the block itself. The compiler already understands that
atoms must start on block boundaries (Section B.1.4). So if the lock is a data bit, rather
than a hardware tag bit, the compiler will also understand that this bit in the first block
. of a busy-wait atom is reserved for hardware use. If necessary it will reserve the entire
smallest addressable-unit containing the bit.

Under this scenario, when a block is locked by the cache, the cache not only sets the
block’s status to lock, but also sets the block’s lock bit. Consequently, if the block must
be purged when locked, the lock will not vanish, for it will be flushed to memory. If
another cache subsequently fetches the purged block to lock it, it will first test the lock
bit. If the bit is set, it will understand that the block is locked, just as if another cache
had informed it, and it will take the same action as it would otherwise take, and will not
store the block. If the processor that locked the block requests further access to the
block before unlocking it, this read or write will cause the block to be fetched and stored

in the cache with lock-waiter status.

$ Just the same, for the sake of exploration, it might be noted that process switching while holding 2
busy-wait lock could be allowed if the protocol were extended. Specifically, suppose there were 2 bus com-
" mand Lock to be used when a processor seeks to lock 3 block. Then the Lock command would be refused
if the requested block were already locked, whereas a Read or Write command on the bus would cause a
locked block to be transferred to the requester cache and locked there. In this case, if a process holding a
block were to wake up on another processor, it will get the locked block simply by reading or writing it, as
usual. In addition, the Unlock command would unlock the block even if the block were in another cache.
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When the processor that locked the block finally tells its cache to unlock the block, if the
block is no longer in the cache, the cache will simply write the final word (which may
accompany the unlock instruction) through to memory, clear the bit in memory, and
simultaneously broadcast the unlocking on the bus. If the bit is a hardware tag bit or if
an addressable unit of the block is devoted to the bit, the cache will not need to fetch
the bit; instead, it can just write a zero to the bit.7

Ezplicit vs. Implicit Locking. Under ezplicit locking, an explicit indicator of the lock
status is set to lock and unlock when appropriate, whereas under implicit locking, the
entire cache or memory module containing the data is held under sole-access by holding
its port (or ports) during the atomic operation. Implicit locking can be used for imple-
menting a processor atomic read-modify-write instruction; bhowever, it suffers from
several serious constraints, none of which are present with explicit locking.

Specifically, the advantages of explicit over implicit locking include these.

® Fine-grained locking: Only the target atom is locked (under the cache lock-state
scheme), not the entire cache or memory module, thereby allowing maximal con-
currency in access to cache or memory.

® Traps permissible: Traps do not require aborting the atomic operation, as they do
under implicit locking (although process switching should be precluded anyway, as
explained above).

® Multiple blocks and modules: The atom can span several blocks and several cache or
memory modules, rather than being restricted to just one — though spanning should
be avoided where possible, just the same, to reduce the lock-holding time.

Furthermore, under the cache-state method of explicit locking, explicit locking is as fast
as implicit locking. This is because a block can be locked on the first read to it and
unlocked on the final write to it, so both locking and unlocking can be concurrent with

7 Several technical points include these. (1) The “L” response in Figure 18 need be nothing more than
the lock bit itseif. (2) The lock value in memory is relevant only when the block is not in a cache. Conse-
quently, that value needs to be updated only when the block is purged (of course), or if the lock is un-
locked while the block is not in 2 cache. (3) Just the same, if the lock values are always updated in
memory when changed, these values may aid in crash recovery. (4) If, contrary to the approach advocat-
ed here, the lock state were used, not to eliminate test-and-set but to implement test-and-set, and if that
were the only use of the lock state, then purging a locked block would never be a problem, so the extra
lock bit would not be needed. (5) If it is desired to insure hardware protection against software errors
that attempt to read or write a3 locked block, a lock could be an entire processor 1.D. rather than just a
bit. For, as mentioned, process-switching is precluded while a busy-wait lock is held. (6) Two other possi-
ble solutions to the problem of purging a locked block are these: sufficiently large set size or associative
lock registers. Specifically, consider the potential nesting of traps during program execution. At each
Desting level (from zero to the maximum possible n) at most one block will be locked by that level under
a busy-wait policy, in order to avoid long lock-holding times. In addition, since process-switching is dis-
abled, the maximum number of blocks that will ever be locked at a time in a cache is n. Consequently, if
the cache set size were n+1, a locked block would never need to be purged. Alternatively, the cache
could have n fully associative lock registers containing the needed information on each lock that is held.
The problems, here, are determining n, and if n can be determined, the possible large value of n.
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necessary reading and writing of the data. In particular, this overlap wiil always occur
for processor atomic read-modify-write instructions that could otherwise be implemented
using implicit locking, since an atom for such an instruction must be contained entirely
on one block. Therefore, cache-state locking should be used to implement processor
atomic read-modify-write instructions, as well as programmer/compiler-implemented
busy-wait locking.

Simple vs. Complex Instructions for Atomic Operations. One may wish to consider

whether a single read-modify-write instruction is better for an atomic operation or

whether several instructions are better. This is the issue of simple vs. complex instruc-

tions, or reduced-instruction-set vs. complex-instruction-set approach to processor design

(Patterson 1985; Colwell et al. 1985). Here the issue is applied just to atomic read-

modify-write operations. Without resolving the issue, I will point out several advantages

of the simple-instruction approach. \

e Simpler instructions: no atomic read-modify-write instructions, just ordinary
instructions

® Fewer instructions: no atomic read-modify-write instructions, just a lock-disable
instruction and an unlock-enable instruction (or two unlock-enable instructions, one
that writes a word and one that does not)

e FLasy implementalion of new aiomic operations: no need to microprogram; just write
macro-code for a program or compiler to implement

In any case, whether the simple or complex instruction approach to atomic operations is

taken, the cache-state method offers the most efficient locking and unlocking method.

Zero-Time Locking/Unlocking. Under the lock-state method, a separate block fetch for
the lock bit is not required if the first block of the atom is to be read, since fetching that
block is overlapped with fetching the lock. But in addition, separate cache accesses to
lock and unlock an atom can be eliminated if the first read and the last write of an atom
are to the first block of the atom, since locking and unlocking can then be overlapped
with the first read and the last write, respectively. How often will these last two occa-
sions for overlap occur (thus implying the first)? Let us consider this question in the con-
text of each of the two reasons for busy wait, in turn. >

® A situation where busy wait is less costly than sleep wait
® A system where busy wait is necessary to implement sleep wait

In a situation where busy wait is less costly than sleep wait, the atom is probably con-
tained entirely on one block since this kind of operation is intended to be very fast, espe-
cially if implemented as a processor atomic read-modify-write instruction.® Just the
same, the speed only needs to be better than that for implementing sleep wait. If sleep
wait is implemented using busy wait (instead of P/V hardware, described in Section
C.1), then it will probably entail several block fetches, as well as reasonably long wait
times and processor operations. So in this case, a detailed analysis of the cost of sleep
wait may justify using busy wait on an atom that is not contained entirely on one block.

® If an atomic read-modify-write instruction were implemented using implicit locking, the atom mut.be
contained entirely on one block to avoid very complicated cache hardware, very low concurrency locking
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But without such an apalysis, a reasonable rule of thumb is to limit this operation to
atoms that are containad entirely on one block, or sub-block transfer unit, so that data
misses will not occur during the operation and thereby slow the operation down. In the
case of sub-block transfer units, described in Section B.1.4, blocks will tend to be larger,
so even if one wishes to allow data misses during busy wait by allowing an atom to span
transfer units, the chances of fitting the atom entirely on one block are greater anyway.
The upshot is that if the atom fits entirely on one block, the first read and last write to
the atom will both occur to the first (and only) block of the atom.

In a system where busy wait is necessary in order to implement sleep wait, the atom is a
process queue, probably dynamically-linked, as in Unix (Peterson, Silberschatz 1985) and
in Denning, Dennis, and Brumfield (1881). In any queue, the first block of the atom con-
t2ins the queue descriptor, and since a block probably contains at least two four-byte
words, there will be enough room for a head and tail pointer, or one pointer and some
additional information. The descriptor will always be read first. In addition, if the
descriptor is written, it can be written last.? But if the descriptor is not written, the
unlock must, indeed, cost an extra access.

To get a feel for whether the descriptor will be written, let us consider several queue
implementations.

® FIFO: the descriptor will be written on both insertion and deletion

® Priority — linear sorted list: the descriptor will be written on deletion, but not
necessarily on insertion

® Priority — binary tree or heap: the descriptor (which points to the tree root) may
be written on insertion and deletion '

® Priority — array of linked lists, each list covering a priority range: the descriptor
will indicate the highest range that contains a non-empty list (for fast deletion), so
may be written on insertion and deletion

We see, then, that under both occasions for busy wait, the first read and the last write of
an atom will probably occur on the first block of the atom.

Having developed an efficient scheme to lock a block — and an efficient scheme for
another cache to initially find out that the block is locked — our concern now turns to
efficient busy waiting for a locked block.

(locking an entire module for a prolonged period of time), and the potential of deadlock among caches in
such a state. The lock state, fortunately, avoids all of these problems.

% In some cases, the descriptor must be written last. If not, there is some chance of incurring 2 miss if it
is written last, but this cost should be negligible since the number of blocks referenced by the processor
during the time of locking should be small. Or from a high-level point of view, if the miss rate on the
atom blocks just fetched is not negligible, the cache is probably not very eflective overall.




Efficient Busy Wait. Three proposals for efficient busy wait will be considered.

e Busy-wait register (introduced here): wait for unlocking, then arbitrate; winner
locks lock; losers continue waiting

o Update-by-block (write-back): invalidate other caches on a write, namely, when lock-
ing or unlocking a lock

o ['pdate-by-word (write-through): update other caches on a write, namely, when lock-
ing or unlocking a lock

Keep in mind that although the first method is advocated here, the other two methods
can be integrated with the lock state by modifying the lock-state protocol appropriately.

Busy-Wait Register. There are two purposes in efficient busy wait.
¢ Eliminate unsuccessful retries from the bus

o Relieve a waiting processor of polling the status of a lock, allowing it to work while
waiting '

When a process is busy waiting, it is running. However, it should not access the bus in
order to retry, but should wait for the unlocking event to be broadcast on the bus, and
then respond appropriately. Furthermore, since the process is running while waiting, it
is best if it can do useful work during this time, instead of polling the lock status. This
can be arranged by having the process prefetch the atom — requesting the cache to
fetch and lock the first block just before the process is ready to use it. More generally, if
a section of code can be specified such that the process is ready to access the atom while
executing the code, then the process can execute this ready section while waiting for the
interrupt from its busy-wait register. '

In considering efficient busy-wait methods, one may challenge, “What is all the fuss
about? Busy wait should not last that long, since long waits are implemented using sleep
wait, not busy wait.” On the surface this is a good point, but it is countered by the
second of the two reasons for using busy wait:

¢ A system where busy wait is necessary in order to implement sleep wait

The manipulations of the sleep-wait and ready queues that must be accessed in order for
the software to implement sleep wait may require several block fetches, say three or four,
per queue. And in addition, there may be quite a few processes that access each queue,
especially the ready queue, thereby generating high contention for the queue. Efficient
busy wait addresses this situation. (On the other hand, efficient sleep wait, considered in
Section C.1, eliminates the need for busy wait, along with the substantial time overhead
incurred by that method.)

When a locked block is unlocked, this action is broadcast on the bus if the state in the
locker cache is lock-waiter — indicating that another processor had requested the block
while it was locked (Figure 19). A busy-wait register waiting on that lock recognizes the
unlocking, and then initiates a bus arbitration. In this case, the winning cache will fetch
the block for write privilege, lock the block using the lock-waiter state (since that will
probably be appropriate), and interrupt its processor; while the other caches will let their




processors continue whatever they are doing and will not access the bus, making no
attempt to fetch the block again (Figure 20).

Regarding the bus arbitration, after the unlocking, the next bus arbitration will give
priority to those caches that are waiting for the lock. This can be easily implemented by
having those caches specify very high priorities, say by devoting the most significant
priority bit for this purpose — only the relevant caches will set it to a logical high.
Then if it turns out that there are no waiters after all (because the waiting processors
were switched out of their processors), the arbitration will proceed normally, with no
wasted time.

This method of busy wait meets the two efficiency requirements fully.
o Eliminates all unsuccessful retries from the bus
o Allows a processor to work while waiting!?

Update-by-Block (Write-Back). Under the standard update-by-block protocol for efficient
busy wait, a block is invalidated in other caches when the block is written. Censier and
Feautrier (1978) may have been the first to suggest this method of busy wait; while
Sequent has implemented it in the context of an update policy that writes each word
through to memory but invalidates other caches rather than updating them (System
1984; Guide 1985). (Also, under the Sequent system, memory, rather than the processor,
executes the atomic test-and-set instruction.)

A version of this busy-wait method developed by Yale Patt (personal comm. 1985) is
extended here by explicating mechanics for a processor atomic read-modify-write instruc-
tion in a cache. The result is that the number of unsuccessful retries on the bus is
reduced to the minimum possible under this approach to busy wait, namely one retry for
each waiting processor at each unlocking of a lock.

Under this method, when a processor accesses a lock bit to set it, its cache initially
assumes read, not write privilege (shared access, not sole access), in case other processors
are also waiting on the bit in their caches. Each processor waiting on that bit continues
testing its copy in its cache until the block is invalidated. That is, when the bit is to be
cleared, the processor that set the bit no longer has write privilege (sole access) to the
block, so it must go to the bus and get write privilege, i.e., invalidate the block in the
other caches. Each waiting processor, therefore, will automatically generate a miss at
its next test of the bit, so its cache will fetch the block for read privilege. However, the
miss should initiate an atomic read-modify-write action under which the cache will hold
the bus while the processor tests the bit. If the bit is zero, it will be updated to one; oth-
erwise the instruction will just abort, and the processor will resume testing as before.
Each waiting processor after the first to acquire the bus will therefore read a value of

10 Note, just the same, that if one did not want to allow for the possibility that the processor may have
work to do while waiting, the processor could, alternatively, poll the busy-wait-register signal.
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one, so will continue testing as before.

The hardware complication, here, is that there must be a special read-modify-write pro-
tocol, distinct from the normal protocol, just to implement efficient busy wait. Normally
a read-modify-write protocol takes effect at the read whether there is a hit or miss: the
block is fetched for write privilege at the read, or else the bus is acquired at the read and
is held through to the write, at which time the block is fetched for write privilege (Sec-
tion B.2.3, Feature 6). Both of these normal protocols, however, subvert efficient busy
wait. Hence there must be a special protocol for busy wait, under which the cache ini-
tiates an atomic read-modify-write action only if the read generates a miss, as above.

The two performance advantages of the busy-wait register scheme, given earlier, imply
corresponding disadvantages of the standard update-by-block scheme. The first disad-
vantaze is that at every unlocking all processors waiting on the lock, except one, gen-
erate unsuccessful retries at each unlocking, each retry requiring a block (or transfer-
unit) fetch. So if the mean number of processors waiting on the lock is n, then the mean
number of unnecessary block (or transfer-unit) fetches at each unlocking is n—1.11 The
second disadvantage is that a waiting processor must continually test the lock bit,
thereby wasting its time if it has useful work to do.

Update-by-Word (Write-Through) Rudolph and Segall (1984), along with the DEC
Firefly and the Xerox Dragon (reported by Archibald and Baer 1985), implement ver-
sions of the update-by-word scheme. This approach allows efficient busy wait by updat-
ing other caches with the new values of the lock as they are written, thereby removing
the need for each waiting processor to access the bus and fetch the entire block (or
transfer unit) when the lock is unlocked. (The reader may wish to review the issues
regarding the two update policies, as presented in Sections B.1.1 and B.1.4.} '

Rudolph and Segall orient their entire protocol toward efficient busy wait. Specifically,
when any block is first written by a processor, the write goes through to memory and to
. all caches, updating all caches that contain the address. Whereas, when a block is writ-
ten a second time (or more generally, the nth time for some n), the block is invalidated
in other caches. This implies that when a lock bit is cleared (unlocked), it will be the
second urite to the block, so the block will be invalidated in all other caches. The first

11 Suppose, in contrast, that the special atomic read-modify-write protocol introduced above were not
used; instead a processor tests the bit and if it is zero then initiates an atomic read-nfodify-write action
under a2 normal read-modify-write protocol. In this case, each waiting processor must make two bus
accesses at an unlocking, the first for the initial test, which will probably read a zero, and the second for
the read-modify-write, which may read a one since another waiting processor may have set the bit in the
meantime. The first access will require 3 block (or traasfer-unit) fetch, and the second will require the
same — except for the processor that sets the bit, which will simply require invalidation. Hence the mean
number of unnecessary block fetches will be 2{n—1) instead of the n—1 required by the special read-
modify-write protocol given above. Just the same, under the special protocol, each waiting processor must
hold the bus while testing the bit, and this will take some time if it cannot be overlapped with the fetch of
the rest of the block (or transfer unit). If this time approaches that of the arbitration and fetch, then the
special protocol is of little value.
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processor to fetch the block, then, will make the first write to the block (using an atomic
read-modify-write) to set (lock) the bit and will update all caches of processors waiting
on that lock, allowing those processors to continue busy-waiting in their caches without

accessing the bus.

An atomic read-modify-write instruction, in this scheme, is identified as such to the
cache and goes through to the bus as such, maintaining sole access to a memory unit,
using explicit or implicit locking on that unit. Because of this, all unsuccessful retries are
eliminated from the bus using the foregoing protocol.!®

The DEC Firefly and Xeroz Dragon implement the following innovative update policy.
o Update-by-block (write-back): for unshared blocks (copies in no other caches)
o Update-by-word (write-through): for shared blocks (copies in other caches)

@ Update other caches: Firefly and Dragon

o Update main memory: Firefly only

Both schemes use the bus hit line (described earlier) on bus writes, as well as on bus
reads, to detect shared/unshared status for a block. Section B.1.4 presents further dis-
cussion of the general performance of this scheme.

Summary. Efficient methods of busy-wait locking, waiting, and unlocking have been
introduced.
o Efficient locking

0 Time cost: probably zero — the lock and the first block of the atom are fetched
concurrently; locking is also concurrent with the first read of the atom if that read
is to the first block (as it probably is)

O Memory cost: little or none — a free cache state, and if necessary, a hardware
tag on each block, or one bit (or addressable unit) of a busy-wait atom

G Control cost: the cache bus control-unit must lock blocks; the bus must have a
code for locked
o Efficient waiting

0 Time cost: little or none — no unsuccessful ret;ies; work while waiting (if possi-
ble)

Memory cost: associative busy-wait register in each cache

Control cost: a match in the busy-wait register motivates bus arbitration, and if
won, a processor interrupt

~12 Rudolph and Segall also have block fetches update any cache in which the block has invalid status.
However, this is not necessary for efficient busy wait, so the motivation for the feature is not clear to me.
They also specify one-word blocks, probably to minimize internal fragmentation due to the devotion of
one block to each busy-wait lock, as discussed in Section B.1.4.
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e Efficient unlocking

o Time cost: probably zero — unlocking is concurrent with the last write to the
atom if that write is to the first block (as it probably is)

O Bus access: only if needed because of a waiter

o Control cost: the cache bus control-unit must unlock blocks; the bus must have a
code for unlocked
Finally, as stated earlier, although the busy-wait register method of waiting is advocated
here, the other two waiting methods (update-by-block and update-by-word) can alterna-
tively be integrated with the lock state by modifying the lock-state protocol appropri-

ately.

Table. The preceding examples illustrate the capabilities that can be given a broadcast
cache protocol, while Table 1 summarizes the corresponding state transitions for a block.
In order to avoid cluttering the table, the following transitions are omitted.

e Source: A cache that fetches a block becomes its new source.

e (lean/Dirty: When a processor writes 3 block, the block becomes dirty (if not
already dirty).

® Lock Waiter / Busy Wait: When a locked block is requested by another cache, the
status becomes lock-waiter in the cache holding the block, and the requester’s busy-
wait register is loaded.

Table 1a, for example, shows that if a cache places a read request for a block on the bus
and the status for the block in another cache is write, the new status for the block in the
requester cache becomes read. Table 1b shows that for the same situation, the new
status for the block in all other caches containing the block (including the source) is
read. Since the source had write privilege for the block in this example, though, it alone
had a copy of the block in this case. Appendix 2, finally, offers fine details of the
requests and responses in the protocol.
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Table 1. State Transitions for Cache Block

Table 1a.

New Status in Requester Cache

Cache Initial Status in Other Cache
request
to bus |Invalid Read Write Lock

Read | Write! Read Read Invalid
Write | Write  Write Write Invalid
Lock | Lock Lock Lock Invalid

Table 1b.
New Status in Other Cache

Cache | Initial Status in Other Cache
request
to bus | Invalid Read Write Lock

Read |Invalid Read Read Lock
Write |Invalid Invalid Invalid Lock
Lock |Invalid Invalid Invalid Lock

Note

1. Write privilege is assumed if the block is invalid (or absent) in all other caches; other-
wise read privilege is assumed.
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B.2.8. Protocol Evolution

Now let us explore the evolution of broadcast update-by-block (write-back) protocols.
Table 2 traces key steps of this evolution, and has two parts, the upper part showing the
evolution of states, and the lower showing the evolution of other features. The states
and the features will be discussed in turn, following a presentation of overall perspective.
Keep in mind that most of the features were discussed in Section B.2.2, to which the
reader may return when helpful.

Overall Perspective. The information on the claasic approach (column 1) is taken
from Censier and Feautrier (1878) who give no reference to the literature in this regard,
so their word is accepted at face value. The classic approach does not necessarily imple-
ment update-by-block (write-back), but it does implement a form of broadcast, along
with dual directories. Specifically, a write action in a cache is broadcast on a high-speed
bus to all other caches, which will then invalidate the corresponding block if it is valid
there. This scheme does not, however, guarantee that conflicting access requests for sin-
gle reads and writes (to hard atoms) will be serialized. The classic approach uses identi-
cal dual directories to eliminate the interference of irrelevant requests.

The other schemes shown in Table 2 follow the dual-directory approach, (Feature 3)
although Goodman (1983) and Frank (1884) independently reinvented it (J. Goodman,
personal comm. 1985). Goodman also implemented the source function, or direct cache-
to-cache transfer, under an update-by-block (write-back) policy (Feature 1). In this
case, one cache provides the data directly to another cache that requests it, if the first
cache has the latest version and has not yet updated main memory. Censier and Feau-
trier had suggested this as a possibility, but Goodman was evidently the first to imple-
ment it, and Frank’s protocol also makes it possible. Papamarcos and Patel developed
their scheme from Goodman's; Katz evolved their scheme from Frank's and Goodman'’s;
while I attempt to identify the most promising features of each, as well as add new inno-
vations.



Table 2. Evolution of Broadcast, Update-by-Biock (Write-Back), Cache-Synchrcaization Schemes

States Classic! Goodme Frank Pap,Patel Katzetal Curren:
{read == shared-access privilege: wrile == sole-access privilege)®  (pre-1078)  (1983)  (1084) (1084) (1985)  proposal

{Regarding otates: N == non-source state: S == source state)

Iovalid N N N N N N
Valid N

Dirty (for update-by-block) N

Read? N N
Read, Clean N N s? s3
Read, Dirty* S S
Write, Clean N s3 s? s3
Write, Dirty 8 s (s)® s s s
Lock, Dirty? S
Lock, Dirty, Waiter® S

Features
1. Update-by-block; dual control units; cache-to-cache v V4 V4 v v

transfer; serialization of conflicting single reads and writes

2. Fully-distributed state information: valid / read / write / VD RWDS RWD RWDS RWDS RWLDS
lock / dirty / source status (V/R/W/L/D/S) (faster response of

caches; greater consolidstion of state information; ssimpler memory)

3. Directory Duality: 2 Identical Dual (ID) / 2 Noa-ldentical ID ID ID ID® DPR¥ NID!
Dual (NID) / 1 Dual-Ported-Read (DPR). (DPR reduces the

hardware; NID eliminstes interference due to updating status —

dirty status is only in processor directory, wailer status is only in

bus directory) .

4. Bus invalidate signal: no need for invalidation write-through v v v v
On write hit: Gain write privilege with a one-cycle invalidation

(instead of a word-write to memory)

On write miss: Gain write privilege while fetehing block (instead

o/ a word-write to memory)

8. Fetching data for write privilege on read miss:

Unshared data: unshared status is determined statically(S) or D ] D
dynamically(D) {save bus arbitration snd invelidste cyde if the data

¢ subsequently written)

Shared soft atorms: i the atom will probably be written sz

8. Processor atomic resd-modify-write instruction: serialize
conflicting access requests (/); also allow efficient busy wait (E)

7. Flushing on cache-to-cache transfer: flush block (F), or do F NF F NFS® NFs™
not flush block (NF); transfer clean/dirty status with the block (S)
(F i» desirable unless bus and memery do not support it, in which
case it would slow down the trensfer; NF requires transfer of
dean/dirty status if block mey be desn or dirty — see source states

<
<
<

™

above)
8. Number of sourcss for read-privilege block: allow multiple ARB MEM LRU,
sources, thus a source for a read-privilege block must slweys eris- MEM

trate before providing the block (ARB); allow loss of (single) source,
forcing the block to be fetched fromm memory (MEM); have last
{euhn become source, allowing LRU replacement across caches
LRU)

9. Writing without fetch on write miss f(no Hock fetch when
saving process state or initializing entire block)

10. Purging dirty resd-privilege block: No Sush i block in
other cache (save bock write); irrelevant under Option F, Feature 7

11. Memory mode (systern snalyeis; relisbility)

<SS <«

12. Efficient busy wait (no unsucceseful retries on bus; process
can work while weiling)




@ o

10.
11.
12

13.

14.

Table 2 Notes

The status concepts appropriate for update-by-block {write-back) are not the same as for update-by-
word (write-through), although there is some correlation.
e  Update-by-block (write-back)
O Block status indicates processor access-privilege to the block
O Read privilege == shared-access privilege
O  Write privilege == sole-access privilege
e Update-by-word (write-through)
C Block status indicates the block’s ressidency among the caches
O  Shared residency, among several caches
O Sole residency, in one cache

Under update-by-block, write privilege implies sole residency, but read privilege does not imply
shared residency. Conversely, shared residency implies read privilege, but sole residency does not
imply write privilege. Just the same, as shown in Feature 5, sole residency detected on a block fetch
can be used to assume write privilege.

On the other hand, under update-by-word, a processor can write any valid block. But if main
memory does not need to be updated, as in the Firefiy and Dragon protocols (Section B.2.2), thea »
write to aa unshared block need not go through to the bus.

A convenient approach to this terminology may be to use shared and sole for both write-back aad
write-through schemes, in spite of the fact that they would have diflerent meanings under the two
schemes. On the other hand, this approach may generate more confusion than convenience.

Referred to by Censier and Feautrier (1978), who give no reference to the literature in this regard.
This is any read-shared copy of a block other than the source copy.

Source function for a clean block is useful only if fetching from another cache is significantly faster
thaa fetching from memory.

The dirty read state is useful only if a block is not flushed when transferred, i.e., Option NF of
Feature 7.

The dirty write state offers the most impelling reason for the source function: the curreat cache has
written the data, so under update-by-block, memory does not have the the latest version.

A source cache provides data only for a write request, not a read request. ] have also heard that
Synapse may not actually implement cache-to-cache transfer here even though the protocol described
in the article makes it possible.

The lock state eliminates the time cost in busy-wait locking and unlocking.

The lock-waiter state indicates another cache is probably waitidg, so the unlock should be broadcast
ou the bus.

No specification is actually given as to whether the directories are identical or not. ID is inferred
because they cite Goodman and do not state that the two directories are different.

The cache data-store is also dual-ported read.

NID will be implemented if the performance gain appears worth the cost.

I point out the possibility.

The need to transfer clean/dirty status can be eliminated by changing the clean write-state to a non-
source state. This also eliminates an inconsistency in the protocol, as discussed in the text.

Option F should be implemented in a system where it does not slow down a transfer significantly.
Option NF,S is depicted in order to explicate the option having the more complex protocol.
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States. From tke table we see that Goodman was the first to implement the source
function, with the dirty write state in which case the cache, not memory, has the latest
version of the block. This was subsequently extended by Papamarcos and Patel to
include the clean (read and write) states, which are useful if fetching from another cache
is sufficiently faster than fetching from memory. Katz et al. introduce the dirty read
state, which is useful if a dirty block cannot be flushed to memory at high speed while it
is transferred to another cache. The current proposal, finally, introduces the lock states.

Goodman. Under this protocol, a cache becomes the source of a block only when it has
the latest version (dirty status), which occurs in this protocol only when a cache has
written the block twice. Specifically, when a dirty block is transferred from one cache to
another, it is also flushed to memory, so it arrives clean. In addition, the first write to
the block goes through to memory and invalidates the block in all other caches — since
the original Multibus does not allow an invalidation signal — so the block still remains
clean. The block becomes dirty only on the second write, at which time the cache
becomes the source of the block. The costs of the invalidation write-through and the
flush to memory will be considered in the discussions of Features 4 and 7, respectively.

Frank. The Synapse computer has its own proprietary bus, which enables invalidation
concurrent with block fetch (Feature 4). Consequently, the clean write state is not use-
ful here, as it is under Goodman's protocol.

Papamarcos, Patel. This scheme introduces the clean write-state, which is useful for
fetching unshared data on a read miss, since no other process will be using the data
(Feature 5). If it subsequently turns out that the block is not written, it will not need to
be flushed to memory when purged. In addition, although

Papamarcos and Patel do not consider this option, if the block is not written, the cache
will not need to provide the block, which is advantageous if fetching from another cache
is not significantly faster than fetching from memory.

Papamarcos and Patel do not consider this option, for under their scheme, if a cache has
a block, it also has source responsibility for the block. This extends the source function
from dirty to clean states, which is useful only if fetching from another cache is
significantly faster than fetching from memory, as stated in Section B.2.1.

More specifically, a cache will be designed with two interface registers, one for the bus
and one for the processor, and can also be given dual-ported read capability, as in Bor-
riello et al. (1985). Each register holds the contents of a block, so a fetch from the bus to
a cache will delay the cache’s processor for at most one cache read-cycle — time to read
the block into the bus register. Furthermore, according to Smith(1982), cache access
time is five to ten times shorter than memory access time, although this may not hold for
lower cost, microprocessor systems. Consequently, if a requester must hold onto the bus
while waiting for a2 memory read, the clean source-state will reduce the bus use-time by a
factor of about five to ten, while delaying the processor of the source cache at most one
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read cycle. In addition, if the requester cache is not prefetching, the processor wait-time
will be reduced by the same factor of five to ten.

Katz, Eggers, Wood, Perkins, Sheldon. This scheme introduces the dirty read (source)
state. The write-dirty-source state is converted to read-dirty-source in a cache when
another cache requests read privilege for the block. The reason that the block remains
dirty is because it is not flushed when is transferred, as it is in the Goodman and the
Papamarcos and Patel protocols. The reason for not flushing the block is that if the bus
or memory does not support the concurrent flush at all, or at the speed of the caches, the
flush will slow down the cache-to-cache transfer or require an extra transfer to memory.
(The flush is discussed further in conjunction with Feature 7.)

Regarding the transfer of source (and dirty) status, the requester cache assumes the plain
read state, since the source status is not transferred at this point. Instead it is
transferred only when another cache requests write privilege, in which case it obtains
write-dirty-source status — or write-clean-source status, if the block is clean. The new
protocol, in contrast, transfers source status here. The reason for transferring source
status is that it will implement a least-recently-used replacement algorithm across
caches — if the last cache to fetch a block tends to be the last to purge it. In this case,
the chance of losing a source for read-shared blocks is reduced (Feature 8).

I feel that it is instructive to point out what appears to be an inconsistency in the Katz
et al. protocol that is due to the ownership terminology — which they borrow from
Frank. They extend Frank’s protocol, along with the ownership terminology, but the
terminology seems to obscure the three independent status categories
(invalid/read/write, clean/dirty, non-source/source). Specifically, the terminology
requires that if a cache has write privilege for a block, it also have source responsibility.
Consequently, in order to get a clean write-state for fetching unshared data at read
misses, they are forced to make the state a source state. What they really desire is a
non-source clean write-state, as in Goodman's protocol. And with the proper terminol-
ogy, they can achieve this end. Unfortunately the source status on the clean write-state
generates a side effect that has some cost: clean/dirty status must now be transferred
(along with the data) in a cache-to-cache transfer, since a source may now have either a
clean or a dirty block. This issue is further discussed with Feature 7.

Current Proposal. This scheme is the result of identifying and carefully analyzing the
features of the other protocols, as well as introducing several new states and features.
The table-notes, along with this discussion, are intended to clarify the reasons for each
state and feature so that a designer can select those that look most promising for their
system, and can then follow through with a detailed performance and cost evaluation of
those features in the context of their system.

In view of this, the current proposal has both clean and dirty source states, each useful
for the reasons already discussed. In addition, the current proposal introduces the lock

(dirty, source) state. This state carries the concept of state information beyond




read/write privilege to that of lock privilege, and distributes its location and control
among the caches, continuing the evolutionary trend of full-broadcast cache protocols
(Feature 2). This allows the time cost of locking and unlocking to be eliminated, since
locking occurs concurrently with a read, and unlocking can occur concurrently with a
write. Finally, the lock-waiter state is proposed, which informs the cache when it must
broadcast the unlocking of a block on the bus, namely, if another cache requested access
to the block when it was locked.

Features. Keep in mind that a feature may speed up a particular operation, but overall
systern speedup can only be determined from estimating the frequency of the operation
in the system. If the frequency is too small, then the feature will not pay off.

Feature 1. These features were discussed above. Note that the serialization of processor
atomic read-modify-write instructions, which moves beyond single reads and writes, is
Feature 6. ‘

Feature 2: Fully-Distributed State Information. The advantage of fully distributing
the state information is that it enables a cache to respond quickly to requests, it is conso-
lidated in just a few bits per block frame ( [log,#states] ), and it simplifies the structure
of memory. Frank, however, does not fully distribute the source status, maintaining a
source bit in main memory, which indicates whether memory is the source or not. But
following Goodman's innovation, in a system with fully-distributed source status, if a
cache is the source, it informs memory not to provide the data when the cache services a
bus request. The current proposal, in addition, distributes lock status, as well as invalid,
read, write, dirty, and source status.

Feature 9: Directory Duality. Goodman and Frank reestablished the classic approach
of identical dual directories, and Katz et al. introduced a single, dual-ported-read direc-
tory, which reduces the directory hardware (Borriello et al. 1985).

However, under both schemes, interference between the bus and processor accesses to the
cache will be generated whenever the processor writes to the cache, for the status of the
written block must be updated to dirty at this time. -Bus requests will be bombarding
every cache continually, so the bus directory (or single directory) will be very busy due
to bus requests. Furthermore, according to Smith (1985), the frequency of writes may
vary from 5% to 35% of a processor’'s memory references. Consequently, one may want
to reduce, or eliminate, this interference.

Two methods of reducing this interference are to update the dirty status only when it
changes; or else in a lower performance design (Borriello et al.), have the read and write
cycles alternate. Another option is to eliminate the interference entirely by having
non-identical directories. In this case, only the processor directory maintains
clean/dirty status. This information is accessed by the cache’s bus-controller only when
the cache data is accessed, in which case interference with the processor must occur any-
way.
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Accordingly we ask, How much smaller is the frequency of changing a block dirty-status
than the total write frequency? Appendix 3, Section 4, derives a formula for this fre-
quency — the frequency of changing a block dirty status to ‘dirty’, or equivalently, the
frequency of a write hit to a clean block. Estimates of .2% to .75% are derived; so if
this range is representative, the interference from updating dirty status to ‘dirty’ when it
changes appears to be negligible, not warranting non-identical directories on that ground

alone.

Under the current proposal, we might point out, non-identical directories eliminate not
only the interference of updating dirty status by the processor (which appears negligible
at this point), but also eliminate the interference of updating lock-waiter status by the
cache's bus-controller, as discussed in Section B.2.2.

Feature 4: Bus Invalidate Signal. Under Goodman's protocol, a cache obtains write
privilege to a block (invalidating the block in other caches) on the processor’s first write
to the block by writing through to memory. As mentioned earlier, this is because the
original Multibus, for which Goodman was designing, does not give the designer enough
flexibility to explicitly signal invalidation (Section B.2.1). Later protocols make the
assumption, in contrast, that the bus does allow ezplicit invalidation. On a write miss
the invalidate signal allows invalidating while reading the block. While on a write Ait to
a block for which the cache has only read privilege, the same signal allows a pseudo-
write (or pseudo-read) that invalidates the block in other caches (and in Frank’s proto-
col, clears the source bit in memory), but does not initiate a memory cycle; thus it can
be limited to one bus cycle even if a memory cycle takes longer.

Just the same, if a cache gains write privilege only at a processor write (Feature § is not
implemented), then the cost of the write-through in terms of bus traffic is small if the
cache blocks are reasonably large, say n bus words. This is because the extra bus traffic
appears to be much less than 1/n under typical access patterns, as shown in Appendix 3.
In addition, the initial write-through is an advantage if it happens to be the only write to
the block and the block is purged before being fetched to another cache. This is because
the block is still clean after the write of the first word, so will not require a flush of the
entire block when purged. Also, if the block is fetched to another cache before being
purged, there is no advantage to the write-through in a scheme in which cache-to-cache
transfer of a dirty block is as fast as cache-to-cache transfer of a clean block.

Regarding the extra bus traffic generated by the invalidation write-through, an upper
bound on this cost can be derived from an impossibly bad case. Specifically, there are
two occasions for block invalidation at a processor write: a hit on a block for which the
cache only has read privilege, and a miss. In the first case, any protocol requires that
the cache access the bus to obtain write privilege, whereas in the second case, only
Goodman'’s protocol requires an extra bus access to obtain write privilege. Consequently,
the relative cost of the invalidation write-through, as compared to invalidation without
the write-through, is greatest on write misses. So an impossibly bad case for the invali-
dation write-through scheme is that every miss is a write miss, thereby requiring an
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invalidation write-through at the time of every block fetch. If, further, the invalidation
wrile is instead assumed to be a read (which may actually take longer than a write), the
invalidation simply increases the block size by one word. The resulting bus-traffic com-
parison ratio is (n+1)/n, so an upper bound on the fractional increase due to the invali-
dation write is 1/n. For example, if n is 8, the upper bound is 12.5%

Feature 5: Fetching Data for Write Privilege on Read Miss. The last three protocols
allow a block to be fetched for write privilege at a read miss in order to fetch unshared
data. This does not reduce concurrent access to the data since the data is unshared; and
if the data is subsequently written by the processor, the bus will not need to be accessed
at that time in order to gain write privilege. '

Papamarcos and Patel introduced the fetching of unshared data for write privilege by
using a dynamic determination of whether the data is being shared or not, namely,
whether some cache currently has a valid copy of it or not. This simply requires an open
collector hit line on the bus. If a cache is purged at a process switch, this scheme will
guarantee fetching all unshared data for write privilege at read misses. But if a cache is
not purged at a process switch, when a process is later run on another processor, it is
possible that some of its writable data will still be in the first cache. However, it intui-
tively seems that this chance would be fairly small since quite a few processes would
probably have been run in the meantime and have wiped out most, if not all, of the data
of the earlier process. In fact, if this is not true, then one might argue that the caches
are larger than needed for the granularity of the processes.

Katz et al., on the other hand, suggest a sfatic determination of unshared status, which
is somewhat more complicated. First, the processor must have a special instruction to
read data for write-privilege, which will apply only if the access is a miss. Second, the
user must be able to inform the compiler, through type declaration, which data objects
may be read-shared among processes, so that all other data objects will be fetched for
write privilege on read misses. Data objects that may be read shared among processes
consist of three kinds: read-only objects, hard atoms (if they are ever concurrently read
by several processes), and soft atoms that are reader/writer synchronized by the software
(to allow multiple readers). If these three kinds of objects are distinguished as such, then
all other data objects should be fetched for write privilege on read misses. This would be
the optimal static-determination approach for fetching unshared data.

However, since the dynamic approach to fetching unshared data appears intuitively ade-
quate and much simpler, static determination can, instead, be used to fetch shared data
for write privilege on read misses, namely for soft atoms that are written during any
access session. For example, an access to a producer/consumer buffer will nearly always
write the buffer descriptor (unless the buffer is full/empty on an insert/delete). Yet the
first access to the descriptor will read it. The compiler could be given the intelligence to
figure this out, and cause the data to be fetched for write privilege on a read miss.

Finally, as with Feature 4, an upper bound can be derived for the extra bus traffic




generated by a protocol that does not fetch unshared, writable data for write privilege at
a read miss. We first assume that all data is unshared, implying that invalidation will
generate no extra bus traffic under 2 protocol supporting both Features 4 and 5. We
further assume that all misses are read misses and that every block is eventually written,
thereby forcing another protocol to eventually invalidate every block at the time of the
first write to the block. For another protocol, every block fetch will eventually be fol-
lowed by an invalidate operation.

In this context, let n,.4, Mpuchs Minvals Pread) 3Dd 7y, be the number of bus cycles
required for bus arbitration, block fetch, block invalidation, word read, and fetch latency
(for internally-interleaved memory), respectively, and let n,,. 4, be the number of words
in a block. Then the cost-comparison ratio is ( Rpuch + Mg + Minyat ) / 0 fetch, making
the fractional increase ( ng.y + Minyer ) / Npeten. I every word-read requires an arbitra-
tion (a very-low-performance bus model), then n ..y = ( Napy + Rregd ) Boyords, While if
the bus can be held for a multiword transfer (the usual bus model), then
Nfetch = Marp + NreadMuwords fOr DoD-interleaved or externally-interleaved memory, and
R forch == Marp + Mgt + NregdNuords fOT internally-interleaved memory. (For a block read,
an externally-interleaved memory requires the processor to issue an address sequentially
to each module in turn, while an internally-interleaved memory distributes the initial
address to the modules in parallel.) Since n;,,q <1n...q, We can assume equality and get
an upper bound.

These assumptions imply that an upper bound for the very-low-performance model is
1/n0orde» the same as the earlier upper bound. Under the usual bus and memory models,
if bus arbitration is overlapped with the prior transfer, as on the Multibus, then n,,; is
zero, again making 1/n,.4, an upper bound. More generally, if n.,,4 = n,.4/¢, then
the upper bound decreases to 1/cn,,q4,.- For example, for externally interleaved
memory, ¢ = 2, so if n = 8, the upper bounds are 12.5% and 6.25%, respectively. The
effect of ¢ is identical in the upper bound for Feature 4 if the formula there is expanded
and if arbitration is again overlapped. Also, for internally-interleaved memory,
Nyrite = Npeed = 1, so with overlapped arbitration, 1/n,,4, is again an upper bound.
Appendix 3, Section 4, finally, derives much smaller, apprgximate upper bounds.13

Feature 6: Processor Atomic Read-Modify-Write Instruction. There are several ways
to implement processor atomic read-modify-write instructions on (hard) atoms so that
conflicting access requests are serialized. Let us consider four methods, the first of which
requires going through to memory, while the others do not.

The first method modifies the update-by-block (write-back) policy, requiring a read-
modify-write instruction to access and hold ¢ main memory unit as usual (using explicit

13 For Katz et al. n .y, is 8, making 12.5% az upper bound, yet the values they report are much
greater, namely 12% to 32%. This is because they counted any bus access, whether for block invalida-
tion, fetch, or flush, as generating the same amount of traffic (S. Eggers, personal comm. 1985).




or implicit locking), even if there is a valid copy of the block in the cache (Rudolph and
Segall 1984). This requires that the processor inform the cache of the start of a read-
modify-write instruction, it requires the cache to manage the bus appropriately and
cache the block, and it requires that the block be invalidated in all caches containing the
address — or updated in those caches in order to implement efficient busy wait.

Some processors do not signal the beginning of an atomic read-modify-write instruction,
such as the Motorola 68000 — which has only test-and-set (MC68000 1982). However,
this signal could be achieved by the programmer by writing a special register in the
cache before and after the instruction execution; and the cache, or interface hardware to
the cache, must be designed to interpret the register accordingly — as applying to the
data references thereby encompassed. In fact, this is similar to the Intel 8086 implemen-
tation of an atomic read-modify-write, which is accomplished by a special bus-lock
instruction prefixed by the programmer to every instruction in an atomic sequence (Rec-
tor, Alexy 1980).

The second method, that of Frank and of Katz et al., requires that the atom be con-
tained entirely on one block, that the block be fetched for write privilege at the begin-
ning of the read-modify-write instruction, and that the cache (or cache module) be held
throughout the operation (implicitly locked). This approach again requires that the pro-
cessor inform the cache at the start of the instruction, and it requires the cache to
respond as mentioned. Papamarcos and Patel propose a variant of this: if the cache
does not have write privilege for the block at the beginning of the operation, the bus is
gotten and held through to the write, at which time write privilege for the block is
obtained as usual. I do not see any advantage in this special case, over that of fetching
the block for write privilege at the beginning of the operation, while the disadvantage is
that the bus is held longer than needed. In any case, the second method, a standard
update-by-block (write-back) method, does not allow the most efficient busy wait, as dis-
cussed in Section B.2.2.14

The third method for implementing a read-modify-write instruction again requires the
processor to inform the cache of the start of the instruction. In this case, however, the
cache does not fetch the block for write privilege until the write, nor does it hold the
cache or bus in the meantime. Specifically, if the write generates a miss, it means that
the block was stolen between the read and the write, so atomicity is violated, and the
cache raises an erception that causes the processor to abort the instruction, and the
cache accordingly aborts the pending write request.15 Like the second method, this one
does not allow the most efficient busy wait.

14 The read-for-write-privilege instruction of Katz et al. will not, in general, work for initiating an
atomic read-modify-write instruction. This is because it is designed for fetching unshared data, so applies
only on misses; whereas for an atomic read-modify-write instruction it must apply on hits as well. This
can be remedied if the software never just reads a hard atom, but always writes it (to initialize) or read-
modify-writes it (to operate), in which case a hit implies write privilege. However, this constraint does
rule out efficient busy wait, which requires fetching the lock bit for read privilege, to test it until it is
found to be zero.

15 Note that the cache cannot implement atomicity here by preventing the block from being stolen (or




Notice that if one did not want to build the intelligence into the cache itself for raising
the exception, it could be built into the processor interface hardware, and the cache
could simply signal this hardware on every miss. It might also be noted that every pro-
cessor probably has some externally-generated exception that could be used here, such as
the non-maskable interrupt on the Intel 8086, and the bus error exception on the
Motorola 68000 (Rector, Alexy 1980; MC68000 1982)

The fourth method for implementing atomic read-modify-write instructions is to use the
cache lock-state to realize explicit locking, as detailed in Section B.2.2. Efficient busy
wait is also proposed there, using a lock-waiter state and a busy wait register.

Fegture 7: Flushing on Cache-to-Cache Transfer. When transferring a block from one
cache to another, there are two advantages to flushing it.

o If the block is dirty: reliability in the face of crashes is improved
e If the block may be clean or dirty: clean/dirty status need not be transferred

Keep in mind that a protocol supports cache-to-cache transfer only from a cache having
source status for the block (indicated at the top of the table).

In view of this, if a source can have either clean or dirty status (Papamarcos and Patel,
Katz et al., and the current proposal), then the clean/dirty status must be transferred
along with the block, unless the block is flushed to memory while it is transferred — as it
is in the Papamarcos and Patel scheme. Papamarcos and Patel, just the same, flush only
dirty blocks, so clean/dirty status must, in effect, be put on the bus in their protocol,
anyway. If memory can keep up with the flushes, as considered next, and if available
bus codes are scarce, it may be useful to flush all blocks so that two different codes are
not needed for cache-to-cache transfer.

However, the flush will slow down the transfer if the bus and memory do not support the
concurrent flush at all, or at the speed of the caches. The cache speed can be attained
ezactly by an interleaved memory in which transfers always start at the beginning of a
block. The speed can be approached on average by an interleaved memory in which
transfers start at any module, or by any memory that is buffered adequately, though
interleaved memory will require less buffering. Therefore, due to its advantages, flushing
should be implemented if it can be done concurrently with the transfer at the speed of
the caches. The non-flush option (NF,S) is depicted for the current proposal in order to
explicate the option having the more complex protocol.

Frank does not have a source read-state; instead memory is the source for any read-
shared block. So if a cache requests read-privilege of a block for which another cache

.has write privilege, the request cannot be serviced by cache-to-cache transfer. Rather

the cache from being accessed from the bus) throughout the operation. This is because it would create
deadlock between two processors simultaneously read-modify-writing the same variable, or needing to ac-
cess each other’s caches during a read-modify-write of different variables.
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the block must first be flushed to memory, returning source status to memory, and then
fetched from memory. In extending Frank’s protocol, Katz et al. added the source read-
state in order to allow cache-to-cache transfer on this occasion.

Feature 8: Number of Sources for Read-Privilege Block. Under Papamarcos and Patel,
if a block is in any cache, it is fetched from a cache, rather than from memory. How-
ever, there is a disadvantage here. For if the block has read status, several caches may
have the block, so any such cache must arbitrate in order to select the actual source.
This is done so that only one cache may interfere with its processor, and if necessary, for
electrical reasons, to limit the number of devices driving the bus. However, this method
of selecting a source does slow down the cache-to-cache transfer — increasing the bus
traffic, as well as the processor wait.

Under the current proposal and that of Katz et al., on the other hand, arbitration of
potential sources is never required. However, if a block has read status in several caches
and the source purges the block (flushing it to memory if dirty), there will be no source
cache for the block. So the next fetch of the block must be serviced by memory, which
may be slower than fetching from another cache even if arbitration is required.

If a fetch from memory-is significantly slower than cache-to-cache transfer with arbi-
tration, then the expected cost of each of the two disadvantages, that of arbitration and
that of fetching from memory, should be determined in order to decide which is expected
to be worse. Let us illustrate with an intuitive evaluation of the frequencies (not the
expected costs) of the two disadvantages as they relate to instructions — probably the
primary source of read sharing. All cache-to-cache transfers of instruction blocks will be
slowed down under Papamarcos and Patel. Whereas cache-to-cache transfer of instruc-
tion blocks will be slowed down under the current proposal only on the next fetch after
the source of a block purges the block (while the block still has a valid copy in another
cache). However, under the current proposal, the cache that most recently fetches a
block becomes its source. This implements a least-recently-used replacement algorithm
across caches if the cache that most recently fetches an instruction block will tend be
the last to purge it. In this case, the disadvantage of the current proposal will be less
frequent than that of Papamarcos and Patel.
.

Finally, notice that if the fetch from memory is significantly slower than cache-to-cache
transfer with arbitration, then the fastest option for the current proposal is to resort to
arbitration when there is no source. This will work in a system that does not support
flushing dirty blocks on a cache-to-cache transfer (Feature 7, Option NF,S) Specifically,
when a source cache is present at a block fetch request, it signals its presence on the bus
by placing the clean/dirty/lock status of the block on the bus. Therefore, at a request
for a block which has read privilege in some cache, every such cache will arbitrate only if
it detects that there is no source cache. Just the same, if this situation is sufficiently
infrequent, then the complexity of implementing the feature can be avoided, resorting,
instead, to a fetch from memory.
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Feature 9: Writing without Fetch on Write Miss. Under write-without-fetch, if the
processor is going to write an entire block, the block need not be fetched on a miss,
though the bus must be accessed in order to invalidate the block in other caches, as on a
normal write. In order to implement it, the compiler must know when a processor
block-write instruction will write an entire memory block. This may occur in initializing
data and in saving process state at a process switch. In addition, the processor must
have a way to inform the cache that the block-write will write an entire memory block.

Feature 10: Purging Dirty Read-Privilege Block. If blocks are not flushed in cache-to-
cache transfer (Feature 7, Option F), a read privilege block can be dirty. When a source
purges such a block, it must access the bus and flush the block to memory. But it is pos-
sible to arrange for another such cache to take source status and tell the purger to abort
the flush, thereby reducing bus traffic. Just the same, this feature has a complication:
the potential takers must arbitrate, or else several sources may result (giving rise to the
arbitration of Feature 8). The time required for arbitration may offset any reduction in
transfer time. However, if the bus can electrically support multiple drivers, then this
one, probably infrequent, occasion is acceptable for avoiding arbitration and for allowing.
the resulting interference with the relevant caches. Yet if the frequency is low enough,
the implementation expense will not be justified anyway. In short, the value of this
option is highly questionable.

Feature 11: Memory Mode. The current proposal inciludes a memory-mode bus com-
mand. A memory-mode request is one that is ignored by all caches, and is implemented
for reasons that include these: to allow system analysis — test, debug, measure; and to
increase reliability — avoid reading an accidentally cached value for an address that
should not be cached, such as the address of a memory-mapped register or port.

Feature 12: Efficient Busy Wait. The current proposal also implements highly-efficient
busy wait, using a busy-wait register that waits for the unlock action to be broadcast,
and which then interrupts its processor. This eliminates all unsuccessful retries from the
bus, and allows a processor to work while waiting (Section B.2.2).

Innovation Summary. The evolution shown in Table 2 can be summarized by listing
the innovations of each scheme, as shown in Table 3. Radolph and Segall (1984), along
with the Firefly and Dragon, are added {from Section B.2.2.

Feature Evaluation. The extent to which any feature improves performance needs to
be evaluated for the particular system of interest. This is accomplished by formulating a
stochastic model of the access patterns of the processors for benchmarks, and then by
evaluating the features through analysis and simulation, using the model. This will allow
the frequency of each relevant event to be determined, and from this, the speed-up that
each feature may offer in the system of interest. Papamarcos and Patel, and Archibald
and Baer (1985), provide examples of this work.
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Table 3. Innovation Summary

Classic (pre-1978)

o

Identical dual directories

Goodman (1983)

0O 0o a oo

Cache-to-cache transfer (source state) for dirty blocks

Dual control units

Serialization of conflicting single reads and writes (not atomic read-modify-writes)
Fully-distributed read/write/dirty/source status

Flush on cache-to-cache transfer

Frank (1984)

ol
8|

Bus invalidate signal
No flush on cache-to-cache transfer

Papamarcos, Patel (1984)

Q
c
)

Cache-to-cache transfer (source state) for clean blocks
Serialization of atomsc read-modify-writes, but not allowing efficient busy wait
Fetch unshared data for write privilege — dynamic determination of unshared status

Moultsple sources for read-shared block; a read-privilege source arbitrates before provid-
ing a block

Rudolph, Segall (1984) (Section B.2.2)

(]

Efficient busy wait: first write goes through to other caches

Firefly, Dragon (Section B.2.2)

o
a

Update-by-block (write-back): for unshared data
Update-by-word (write-through): for shared data; allows efficient busy wait

Katz, Eggers, Wood, Perkins, Sheldon (1985)

a
(=]
Q
a

Dirty read state

Dual-ported-read directory and data-store

Fetch unshared data for write privilege — static determination of unshared status
Single source for read-shared (dirty) block — fetch from memory if source purges block

Current proposal (major features)

o

o
a
[m}

Systematic terminology and conceptual development
Efficient locking and busy-waiting — lock states, dbusy-wast register
Consideration of interdirectory interference

Single source for read-shared block, but last fetcher becomes source, allowing LRU re-
placement acrose caches

Write without fetch on write miss
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C.1. Sleep-Wait and Service-Request Queuing
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As for busy wait, in making sleep wait more efficient, it is of special interest to make it
faster. With this bias in mind, we will see how enqueuing and dequeuing on a sleep-wait
queue, or other priority queue, can be made very fast. Then we will look more
specifically at the use of priority queues as service-request queues. And finally we will
generalize the hardware-queue technique as a paradigm for implementing high-
contention atomic operations in VLSL

C.1.1. Usefulness of Hardware Sleep/Priority Queues

Sleep/Priority Queues — Usefulness. The priority queue is a pervasive construct in
an efficient multiprocessor system, for it is used to implement sleep wait, as well as to
manage service requests. High priority processes and requests should be given attention
first, so that the system will meet the performance demands of the users and algorithms,
as well as manage the limited hardware resources efficiently.

Sleep wait can be elegantly implemented using P and V operations on semaphores, that
is, queues with their accompanying counts. P and V will respectively decrement and
increment the count, and may also enqueue or dequeue a process. Priority queues
without counts are also a central tool in a multiprocessor system, allowing one process or
processor to send service requests to another. For example, a program-interpretation
(general-purpose) processor will send service requests to I/O processors, floating point
processors, and other processors by enqueuing the requests on the appropriate queues.

The two pervasive uses of priority queues, then, are these:
¢ P/V: count decrement/increment is interlocked with 'énqueuing/dequeuing

® Service requests: service requests are sent from one process to another, typically
from one processor to another

As we will see, the same hardware that is used for sleep-wait queues can be used for
service-request queues, so two different kinds of queue need not be designed. Figures 21,
22 illustrate the P/V operations, which will be explained in detail below.

Also note that the sleep-wait operations that we will consider here are standard P and V,
which do not implement multiple readers. Yet if multiple-reader sleep-wait were con-
sidered important, it could be implemented in hardware, extending the paradigm
presented here for P and V. Or else the synchronization descriptor could be imple-
mented in software, and the actual wait queues implemented using the hardware priority”
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queues. In this case, access to the synchronization descriptor should be achieved using
busy wait; this is because contention for the synchronization descriptor should not be
high, since the queue operations will be so fast. Finally, if it is desirable to impiement
optional-wait P operations in the hardware, this is possible as well.

Hardware vs. Software Queues — Performance. If priority queues are imple-
mented in software, they will incur non-trivial performance cost in terms of processor
time, as well as switch time, to fetch the needed data, and to write the data to memory
if it cannot be left in a cache. If, in addition, the sleep-wait operations (P/V) are not
implemented in hardware, access to any software queue will be possible only by busy
waiting on the lock for the queue. With hardware implementation of sleep/priority
queues, on the other hand, busy wait can be eliminated and the switch time reduced to
a trivial amount. The amount of reduction in switch traffic, and the corresponding
increase in performance, must be determined through stochastic modeling, informed by
simulation, in order to be sure that the cost of the hardware is warranted by the perfor-
mance gain in the system of interest.

Elimination of Busy Wait. Actually, the only way to reduce the probability of busy
wait to zero, for a particular wait condition, is to allow the hardware sleep-wait queue to
grow as long as the maximum number of processes that could ever wait on the condition.
However, with queues for which this worst-case value is much larger than the average
value, this would entail undesirable hardware cost due to a long, fixed-size queue, whose
cells would be underutilized; or else it would entail a complex and slow algorithm to link
the entries, or to extend the queue in some way when necessary.

The method developed here, instead, uses fast, fixed-size queues of reasonable size —
determined by analysis and simulation — to reduce the probability of busy wait to an
acceptably low value. If a queue fills up and a request is then made to place something
on the queue, this rare occurrence is handled by the requester busy-waiting until the
queue again has space available. While waiting, the requester can record the occurrence
of the event in a table for future use in adjusting the size of the queue. Therefore, elimi-
nation of busy wait is a convenient way of saying that the probability is reduced to an
acceptably low level, so that busy wait is rarely, if ever seen.

FParallel Switch. It is interesting to notice that, while the most efficient implementation
of busy wait requires a broadcast system — to allow the broadcast of current status
information — the most efficient implementation of sleep wait allows a parallel switch
without broadcast, since the information and operations are centralized, in a memory
processor unit (MPU). The MPU performs the enquening and dequeuing operations on
the queues (Figures 21,22). It is especially advantageous to have memory perform high-
"contention atomic operations, in contrast to other operations, since the requisite data
cannot be kept in a processor cache for an extended period of time due to the contention
for the data. The data must be fetched from memory or another cache anyway. The
performance advantages will become evident in the ensuing discussion, and are summar-
ized in Section C.2. In short, an attractive side-effect of having memory perform the




atomic operations is that this implementation is possible in a parallel switch.

Ultracomputer Approach. The designers of the Ultracomputer have recognized the need
for fast queue operations (Gottlieb et al. 1983; Edler et al. 1985). However, their imple-
mentation is mostly in software, the only hardware atomic operation being add.

Atomic add is used to assign, to a requesting process, a queue cell for the process to
insert into or delete from. However, the assigning of cells is not interlocked with the
enqueuing/dequeuing operations on the cells themselves. The result of the lack of inter-
lock is one complication after another, until the final scheme is incredibly complex.
Complicated techniques are required for insuring that inserts and deletes on each cell are
serialized properly, as well as for preventing overfiow and underflow of the queue. For
all of this effort, the result is nothing more than strict FIFO queues, requiring priority
queues to be implemented by multiple FIFO queues, each covering a single priority
value.

Furthermore, busy wait is not eliminated; P and V must still be implemented using busy
wait. And busy wait itself is implemented inefficiently using atomic add instead of test-
and-set. In particular, a successful busy-wait try requires two switch accesses, one to
test the variable (to preclude livelock, where two opposing processes alternately incre-
ment and decrement the variable, neither gaining access), and one to atomically test-
and-decrement it; while an unsuccessful try requires a third switch access to nullify the
decrement by incrementing the variable. As they note, Dijkstra (1972) mentioned the
possibility of using atomic increment for busy wait, but decided against it due to the
livelock possibility, opting instead for a swap instruction, used to implement test-and-set.
Gottlieb et al. argue that as the number of CPUs grows larger, the advantage of atomic
add, here, increases. But it seems to me that atomic add has only disadvantages here: it
generates twice as many switch accesses as test-and-set for a successful try, and three
times as many switch accesses as test-and-set for an unsuccessful try.

These inefficient Ultracomputer algorithms appear to result from an attempt to use the
atomic add operation to the fullest. Add is commutative and associative, so can be
implemented by the Ultracomputer switch, as shown in Figure 23. Although the switch
implementation of commutative-associative atomic operations is a truly creative contri-
bution to computer architecture made by the Ultracomputer designers, you can go only
so far with just an atomic add! For busy wait, atomic add is inefficient. And for
efficient management of high-contention queues, especially sleep and priority queues,
atomic add is of little help. Hardware enqueuing and dequeuing must be used, and since
VLSI chip-design tools are now readily available, the time for hardware queues has
arrived.
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C.1.2. Structure, Management, Function of Hardware Queues

Data Structures. There are two data structures that are used to implement sleep-wait
queues

o Hardware structure: semaphore — containing queue and count

o Software structure: process control block — containing state of enqueued process

We will now look at each in turn.

Semaphore. A semaphore is an atom that contains a count and a process gueue, and is
used to manage access by processes to a resource pool using sleep wait. The term sema-
phore is also used to refer to the count itself, with the ambiguity resolved by context. If
the maximum size of the pool is n, then the current size varies between 0 and n as the
items are allocated and deallocated. The count is initialized to the initial number of
resource items available, usually n, and is subsequently operated on by increment and
decrement. The resulting count indicates the following, where size refers to current size

of the pool or queue.
e Count > 0 indicates

g Pool size — number of resource items available
C Queue empty — no processes waiting

e Count < 0 indicates

G Pool empty — no resource items available
C Queue size — number of processes waiting

A queue, in the present context, is a priority queue, providing deletion of the highest
priority process in the queue. The low-level details of the design have not yet been
developed, but the following is clear.

Each queue will consist of a header and a body. The header contains the current count
and maximum possible count, while the body contains the queue cells, each of which has
an ID field, a priority field, and a valid bit. The queue has a fixed number of cells, as
mentioned earlier, for speed. The appropriate queue sizes, as well as the frequencies of
each size, must be determined by analysis and simulation, but typical sizes may be 1, 2,
5, 10, 20, in decreasing frequency — there will be many small queues but only a few
large queues. A single chip may contain queues of different sizes, or queues only of the
same size. In the former case, all queues in a row on the chip should probably have the
same size, in order to make the design more regular (Figure 24). The highest priority
entry on a queue is determined in the way that bus arbitration is typically done —
resolving each bit in turn, from the most significant to the least, among the valid cells.
The queue could also be made associative — allowing deletion by process ID — if the
cost appears warranted by the frequency of use.

The count is never allowed to increment above its maximum value. Consequently, a
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queue that is not normally thought of as having a count, such as a ready queue or, more
generally, a service-request queue, has the maximum initialized to zero, allowing the
hardware to be the same for both kinds of queues.

The queue will also need logic for determining when it is full. One alternative is to use
the valid bits — detecting that there are no invalid cells. Another alternative, is to
maintain a hardwired size that would be compared to the current number of valid cells
as indicated by a negative value of the current count.

In conclusion, the replication of a few different kinds of logic cells, in particular, count
cells and entry cells, and the simple control, make an MPU queue chip highly regular,
hence a good target for VLSI implementation.

Process Control Block. A process control block (PCB) is the data structure that con-
tains the state of a process while the process is not running, and other necessary control
information, if any. It has a valid bit, which is set to invalid when the process is awak-
ened and its state is loaded into a processor, and is set to valid when its state is saved in
the block as it goes to sleep. For service-request queues, similarly, a service-request con-
trol block would be used to pass the needed information between the requester and the
server.

Queue Management. In order to insure the integrity of sleep-wait and service-request
queues — whether they are implemented in software or hardware — the system software
provides the user with the procedures for manipulating the queues — the procedures for
initialization, enqueuing, and dequeuing. These procedures will collectively be called the
queue manager, and will include the responsibilities of an operating system (OS)
scheduler and dispatcher. In a high performance system, the overhead of invoking the
queue manager will be as small as possible, close to that for any user-designed procedure,
the only difference being invocation by trap instead of explicit control flow. Unlike a
monitor, the code will be reentrant, allowing any number of processors to execute it
simultaneously. More specifically, tables used to manage allocation of the queues will be
lockable, but the code for manipulating the queues will not be lockable, thereby allowing
greater concurrency. Consequently, at any one time there could be an instance of the
manager running on each processor. K

Since the hardware queues are of fixed size, the queue manager will allocate, address,
and deallocate them as it would for fixed-size (statically-allocated) software queues. At
the time of an allocation request, if there are no hardware queues available of the
appropriate size, a software queue will be allocated instead. The information needed for
~ subsequent access to the queue will be kept in a small descriptor. It would probably not

be advantageous to make every queue a hardware queue even if that were possible. The
main advantage is in implementing the high-contention queues in hardware.

Finally, as will be explained in detail in the section on operations, the queue manager
does not directly manipulate a hardware queue. Instead, the MPU containing the queue -

— 55 —




manipulates it. Or put differently, the MPU consists of all the queues, along with an
interface between the switch and each queue. Each queue contains highly parallel circui-
try that performs the enqueuing/dequeuing operations. The queue manager requests the
init/enqueue/dequeue operation of the appropriate MPU, identified by the queue
address, and in turn receives the information it needs on the current status of the queue.

To illustrate, in response to an enqueuing request, the manager is informed as to whether
the queue is already full or not. The CPU running the queue manager then gives up the
switch, having held it only for the time needed for the high-speed write/read — a write
followed immediately by a read from the queue, through different registers in the queue.
The addressed queue continues to carry on the requested operation, while at the same
time the CPU evaluates the information it received in order to determine what to do.
Notice the concurrency between the CPU and the MPU, and among the parallel com-
ponents of the queue circuit, all achieved without holding onto the switch. Ideally the
queue circuitry will have a cycle time as fast as the switch cycle time. But if current
VLSI technology does not allow this, then successive requests to the same queue will
suffer some delay.

Queue Operations. There are three operations that can be executed on a priority
queue. ‘

e Initialize the queue
® Engueue an entry
® Degqueue the highest priority entry

Let us consider each in turn. When the queue manager is referred to, now, the reference
is to the instance of the queue manager of interest.

Initialization. The queue manager initializes a sleep-wait queue by requesting its initial-
ization, and by sending the initial and maximum values of the count along with the
request. All cells of the queue are thereby set to invalid, and the current and maximum
counts are set to the requested values.

Enqueuing — P. In requesting the P operation, the queue manager gives the request to
the MPU, along with the address of the queue and the*process’s ID and priority (Figure
21). The MPU reads the count and returns the value to the manager, along with an
indicator of whether the queue is full or not. This constitutes a write to queue registers,
and a read from queue registers, and completes the switch transaction.

If the queue is not full, the MPU concurrently decrements the count; and if the resulting
value is less than zero, enqueues the requesting process, placing the ID and priority on
the queue. The hardware actually enqueues the process while operating on the count
and evaluating it. If the queue was not full and the result is negative, then the valid bit
of the new entry’s cell is set to valid.

In the meantime, the queue manager decrements the count it received, and if the result
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is negative and the queue was not full, it saves the state of the process in the process’s
PCB. It then takes a process from a ready queue and loads its state. The reason for the
valid bit on the PCB is that it is possible, though highly unlikely, for a process ID to be
moved from a wait queue to a ready queue and then to a CPU before the process state
has been written to the PCB. If a CPU wants to run a process whose PCB is invalid, it
busy waits on the valid bit. This should rarely, if ever, occur. On the other hand, if the
queue was full, which also should be a rare occurrence, the manager busy waits until the
queue is no longer full, as described earlier.

Dequeuing — V. The V operation is analogous to the P operation. In this case, the
queue manager gives the MPU just the request and the address of the queue (Figure 22).
The MPU reads the count and returns its value to the manager, as in the P operation,
but now it also returns the ID and priority of the highest priority process on the queue
(if any), effecting a read from queue registers.

In addition, the MPU concurrently increments the count, and if the initial value was
negative, dequeues the highest priority process by setting the cell’s valid bit to invalid.
Note that when an MPU receives a V request, the highest priority process in each of its
queues should already available, having been selected by the queue circuit during the
time since the last insertion or deletion on the queue. As mentioned, this selection
should be as fast as the switch cycle, if possible; otherwise successive requests to the
same queue will suffer some delay.

In the meantime, the manager evaluates the count it received, and if it is negative, puts
the process ID and priority that it received from the queue on a ready queue, after
adjusting the priority appropriately. The priority is an increasing function of the
amount of contention expected on the lock, but it may be as simple as giving any lock
holder the same high priority.

In addition, it is a software error for the number of V's on a semaphore to outbalance
the number of P’s so as to (attempt to) push the count above its maximum. This error
can be returned to the queue manager in response to a V request, if desired. Since the
initial value of the count is kept in the queue header and the current value is never
allowed to exceed it, the same circuit that manages this can return the sbove error sig-
nal. If the queue, on the other hand, is used as a service-request queue instead of a
sleep-wait queue, the error line would be ignored by the queue manager when requesting
a dequeue operation.

Priority Preemption. Priority preemption of a running process may be desirable.
Specifically, if a running process has lower priority than the process just taken from a
sleep-wait queue, it may be desirable to preempt the running process. With a non-
broadcast parallel switch, preemption is limited to the process invoking the V operation
on the wait queue. The queue manager should compare this priority to that of the pro-
cess taken from the sleep queue. If the priority of the running process is lower, the

manager should save the state of the running process, place the process on a ready .



queue, and load the state of the process taken from the sleep queue.

Under a full broadcast system, on the other hand, broadcast can be used to achieve
priority preemption across all processors whenever a process is put on a ready queue.
Specifically, each CPU is given a priority register containing the priority of its currently
running process, along with hardware that will compare this value to a broadcast prior-
ity, will arbitrate for the bus if the broadcast priority is higher, and will interrupt the
process running on the CPU if the arbitration is won. As mentioned in Section B.1.1,
this hardware may be integrated with a CPU cache.

At a V operation, when the queue manager receives a process priority and ID from an
MPU, it places the priority and ID on a ready queue, and in doing so, broadcasts the
priority to all CPUs. The broadcast priority is, accordingly, compared to the priorities
in all of the priority registers. So if a running process has a lower priority and has the
corresponding interrupt emabled, its priority-register interface arbitrates for the next bus
system, as in efficient busy wait. The arbitration scheme, as discussed in Section B.2.2,
uses the most significant bus-priority bit. The bus priority, in the present case, is deter-
mined by the setting of the most significant bit, along with the boolean complement of
the process priority {(or a derivative of it). The complement is used because the lower
the process priority, the higher the bus priority should be, in this case. There must be a
way to resolve equal process priorities, say using a daisy chain, or having the lowest bits
of the bus priority be determined by the processor.

The winner then interrupts its CPU, and the queue manager there saves the state of the
running process, places the process on a ready queue, and loads a new process from the
ready queue that occurred in the corresponding broadcast. If the system has a single
bus, then there is probably just one global ready queue (Figure 25).

Service-Request Queues. As mentioned, priority queues have frequent use as request
queues for processes or processors. To illustrate, let us consider how they may be used
for an 1/O service request motivated by an I/O request or a page fault, either of which
invokes the appropriate OS procedure/s.

The OS forms an I/O request by creating an I/O conttol block, comparable to a process
control block, and enters the information that the I/O driver will need to service the
request. The OS also includes the process ID, priority, and (if appropriate) the processor
ready-queue address in the I/O control block. The OS then gives the I/O request an ID,
as well as a priority, and enters the ID and priority in the appropriate I/O request queue.

An I/O driver takes requests from the appropriate queue, mapping to the corresponding
control blocks in the same way as dobe for process control blocks, and services the
requests, leaving the resulting status information in the I/O control blocks. When done
with a request, the driver puts the process ID and priority on the appropriste ready
queue.
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C.1.8. Related Issues

Let us now look at several issues that have yet to be resolved. A few of these have
already been mentioned.

Fast Address Mapping. How should fast mapping from a process ID to the address of
the process control block be implemented? If processors have their own ready queues,
how should fast mapping from a processor ID to the address of the processor ready queue
be done? The best way may be to take the process ID as a lower part of the PCB virtual
address, and to take the processor ID from a lower part of the processor ready queue vir-
tual address. The upper part of the addresses will then be fixed — devoting a certain
area of the address space to PCBs, another to processor ready queues, and other areas to
other kinds of shared objects. Note also that if the caches are managed by virtual
address, rather than physical, the synonym problem can be resolved by devoting the
upper part of the address space to shared data, and this resolution is consistent with the
fast mapping scheme.

FIFO Queues. It may be desirable to have fast FIFO queues as well as priority queues.
These can be implemented with the priority queue hardware by allowing it to be initial-
ized to a FIFO mode, which will operate as follows. '

The enqueuing operation will remain the same — the first empty cell is selected — but
the dequeuing operation will be changed so as to choose the oldest entry. It would be
possible to have the dequeuing operation cause all entries to move one cell toward the
head of the queue, as in a normal hardware FIFO. However, since the priority hardware
is in place, it will be less expensive to use a single priority bit, and have this move from
cell to cell.

To be specific, suppose that the value one is of higher priority than zero, and that all
entries have the most significant priority bit zero, except for the oldest entry. Then the
normal dequeuing operation will select the oldest entry. In addition, the dequeuing
operation should cause this one to move to the next cell in the direction of the queue tail
(wrapping around to the other end of the queue when necessary), which will be the new
oldest cell. When an entry is loaded, it is given a most significant bit of zero, unless the
queue is empty (the semaphore count is non-negative), in which case it receives a most
significant bit of one.

Starvation. Should starvation of a process be prevented in the case that there is
always another process of the same priority on the queue? What is the probability of
starvation without its prevention?

In case it is decided that starvation should be prevented, the following scheme may be
the simplest. Let a fourth command to a queue be implemented:

e Promote: promote, or raise, the priorities of old entries to at least the value sent
with the command '
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In 4.2BSD Unix, the OS evaluates the priorities of processes in the ready queue every
second and raises the priorities of those that have been in the queue a relatively long
time (Peterson, Silberschatz 1985). So let us assume that every so often the queue
manager will execute the promote command on the queues of interest. Further, let us
assume that only the processes having priority less than v are of concern. Then the
queue manager will give the value v with the command, and the queue circuitry will
then modify the priorities of the old processes so that they become at least as great as v.

Regarding the age of the process, the simplest implementation is to not maintain an age
indicator and just apply the command to all entries in the queue. A simple age indica-
tor, on the other hand, is a single age bit for each cell, where zero means young and one
means old. Under this scheme, when an entry is placed into a cell, its age bit is cleared
to zero. When the promote command is subsequently given, it is applied to all entries
whose age bit is one, and then all age bits are set to one.16

Regarding raising the priorities, let us assume that larger numbers designate higher
priorities. The argument v can then be bitwise OR'd with the priorities of the old
processes. This can be implemented indirectly by making the priority bits of 8 cell indi-
vidually loadable, and having the bits of v that are one trigger the loading of the
corresponding priority bits of the old entries. Alternatively, the ones of v can trigger the
setting (instead of loading) of those bits if that is simpler. The result is the same, in
either case — the bits take on the value one. (If smaller numbers designate higher prior-
ities, then v is bitwise AND'd, which is equivalent to the zeros of v triggering loading or
clearing.)

To be specific, let us assume that a priority has seven bits and that v is 100 (binary).
Then an entry having priority zzzz0zz would be given the new priority zzzzrlzz
(where the z's are not necessarily equal). Notice that this not only raises priorities
00000zz, but also raises priorities that are greater than 00001zz if their bit two is zero,
thereby erasing some distinctions among higher priorities. This is a side effect of a sim-
ple hardware algorithm. However, it should not cause a problem since the effects of
priority distinctions cannot be finely tuned anyway because of all the other variability in
a multiprocessor computer system. Note also that the PCB of a process contains other
information about the priority of a process, so the change to the priority in a queue will
not destroy this PCB information.

Associativity. Will associativity be worth implementing? When the software wants to
kill a particular process that is on a queue, will it know what queue to look on? If not,
should it search several queues, or else (in a broadcast system) enter the process ID in a
global, associative table, to be accessed whenever a process is enqueued or dequeued?

18 The most general scheme — of theoretical interest only — is to bave an age counter for each cell.
When an entry is enqueued, its counter is set to a high value of interest, say all ones. At each promote
command, the command is applied to all entries having value zero, and all counters not yet zero are then
decremented.




Switch Interface. Only three commands are needed for the queue operations under
the original scenario, one command for each of the operations init, enqueue, dequeue.
On a standard bus, these commands would be implemented using memory write for init
and enqueue, and memory read for dequeue, along with one other bit to distinguish
between init and enqueue. If the bus did not have a user-specifiable bit, the second bit
would be one of the data bits.

If FIFO mode is implemented, another init command will be needed. If starvation is to
be precluded using the promote command, a fifth command is needed. And if deletion
by process ID is desired, a second dequeuing command must be included, bringing the
total to six.

Partitioning. If the collection of processes and process queues in the system can be
partitioned so that processes in a set primarily access queues in that set, then local MPUs
may pay off (Figure 26). In this case, a set will be assigned to one processor and its MPU
so that processes running on that processor need not access the switch in order to access
the queues in their set. Such partitioning and assignment to processors will also improve
the effect of the caches as local memories, since the processes running on a processor will
now tend to access the same shared data, rather than data accessed by processes on
other processors. Under this organization, preemption by higher priority processes would
be undesirable across processors and thus would be confined to each processor, as with a
non-broadcast parallel switch.

Entry Information. What information shouid be piaced in a queue entry? May it be
desirable to enqueue information other than just the process ID and priority? For exam-
ple, under partitioning, a processor ID should be included, indicating the processor that
the process should be run on: when taken from a sleep-wait queue, the process would be
put on that processor’s ready queue.




C.2. Paradigm for High-Contention Atomic Operations

A general paradigm has been illustrated here using sleep/priority queues:

Implement high-contention atomic operations in VLSI circuits at the memory cells.
We may call a chip containing these circuits an MPU since it may be thought of as an
intelligent memory unit.

The advantages of this paradigm are less switch traffic and greater concurrency. Briefly,
the CPU is relieved of executing the atomic operations, the bus is relieved of carrying
the corresponding traffic, and the MPU executes the atomic operations themselves at
bigh speed. More specifically, we have the following.

® Less switch traffic
O Atom is not transferred to CPU, but is left at MPU
g Little data is transferred between CPU and MPU
o Switch is not held during CPU operation
O Atom is not locked or busy-waited on
e Greater concurrency _
o Concurrency between CPU and MPU
@ Concurrency in MPU circuit
O Concurrency among processes accessing atom
© Concurrency among processors accessing the switch

Let us look at each advantage, in turn, then at two final considerations — the idea of a
general purpose MPU, and the suitability for VLSI implementation.

Less Switch Trafic. Use of the memory switch is conserved by leaving the atom at
the MPU — where the MPU executes the atomic operation — rather than transferring it
from CPU to CPU. If the atom is small, in particular, one bus data-word, there is no
significant saving here. But if parts of it may occur on several memory blocks, then it is
a significant help to avoid the frequent switch accesses otherwise necessary to transfer all
of it from CPU to CPU. Keep in mind that since the operation of interest is a high con-
tention operation, even if there are caches, the atom will probably not stay in a cache
very long after being used there, but will soon be fetched by another cache for use by its
CPU. Consequently, caches offer little, if any, help in reducing the frequency of transfer
from CPU to CPU.

The CPU could alternatively leave the atom in the MPU but hold the switch while it
operates on it, fetching just the words of interest. Or it could busy or sleep wait for
access, eventually locking the atom, then fetch just the words of interest, and finally
unlock the atom. But any such scheme consumes more bus cycles than the MPU scheme.

The MPU alternative is to transfer a small amount of data from the CPU to the MPU,
along with the request and address, and then to transfer a small amount of data from the
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MPU back to the CPU, including current status information. To illustrate, for a P
operation, a process ID and priority are sent to the MPU, and the current count value
and full indicator are read out and sent to the CPU. This exchange would ideally take
place as fast as a read from high-speed memory: the first phase is the address phase,
during which the address, request, and data are latched by the addressed queue; while
the second phase is the data phase, during which the data is read from the queue regis-
ters and latched by the CPU. However, if the same data lines must be used in both
phases, then the transfer will probably require two switch cycles, rather than just one.

Concurrency. After the CPU receives the status information, it no longer needs the
switch, so releases it. The CPU then evaluates the status information, say the count
value and the full indicator, and the MPU continues to execute the operation it started
upon receiving the request. The concurrency between the CPU and MPU, here, is what
allows the CPU to release the switch so soon, not holding it while it or the MPU executes
the operation.

In executing the request, furthermore, the MPU utilizes the parallel logic in its circuit to
execute the operation faster than software could ever execute it. Hopefully the circuit is
fast enough to service successive requests as fast as could be delivered on the switch.
But if the MOS technology of the day does not meet this speed, successive requests to
the same atom will suffer some delay, though successive requests to different atoms in
the same MPU will incur no delay.

Notice, furthermore, that since no locking and unlocking of the atom is necessary, the
atom is available whenever the switch connected to it is available (excepting delay that
may be unavoidable in successive requests to the same atom). And since the operation
executed by the parallel circuit is much faster than a software implementation — as fast
as a read from high-speed memory — there will be less contention for access to the atom.
Consequently, there is greater concurrency among the processes in pursuing their activi-
ties since they are not waiting as long to gain access to the high-contention atoms.

Finally, implicit in all of this is the implication that since there is less switch traffic, there
is greater concurrency among processors in the system. > Furthermore, broadcast is not
needed for this algorithm, as it is for high-speed synchronization of caches, so this algo-
rithm can easily be implemented in a parallel switch. _

General Purpose MPU. One may ask, why not use a general purpose processor to
manage the atomic operations at memory, thereby allowing many different kinds of
operations to be done? Queues, for example, could then be variable size. The reason is
that the generality would be purchased at the expense of speed, and speed is essential
because the atomic operations of interest are high contention. An MPU will only pay for
itself in dealing with high-contention atomic operations; low contention operations can
conveniently be done by the CPUs.

Suitability for VLSI Implementation. Finally, the kind of MPU envisioned is -



appropriate for VLSI implementation since it will consist of a highly regular structure.
To be specific, 3 few kinds of cells, say queue-entry and queue-header cells, will be repli-
cated many times on a chip, and will be managed by relatively simple control.

One hears over and over that computer designers must have a vision for what technology
offers them, so that they can capitalize on it. This is my vision.17

17 Designing one of these chips appears to me to be no more complex than a project for the introduc}o-
ry VLSI course at Berkeley. Sophisticated design experience can be important, just the same, in making
the circuit cells as compact and as fast as possible. I fact, these two issues are the major low-level ques-
tions still in my mind regarding queue circuits: How many queues of what size can fit on a chip? How
fast can a queue operate?
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D.1. Vision for Fast Synchronization

We have explored the three low-level synchronization issues for shared-memory architec-
ture and proposed new mechanics for corresponding high-performance implementation.

e Synchronization of caches — for broadcast switch
e Implementation of busy wait — for broadcast switch
¢ Implementation of sleep wait — for any switch

Let us now recall the two reasons for using busy wait.
® A situation where busy wait is less costly than sleep wait
o A system where busy wait is necessery in order to implement sleep wait

If the hardware implementation of sleep-wait queues proves itself — if the performance

advantage in the system of interest is worth the additional hardware cost — then the

second occasion for busy wait will vanish. In such a system I envision sleep wait costing

very little in bus traffic or processor time. But in any other system, the second reason

for busy wait remains, making effictent busy wait critical:

¢ Eliminating unsuccessful retries from the bus

¢ Relieving a waiting processor of polling the status of a lock, thereby allowing it to
work while waiting

The efficient busy-wait scheme developed here fulfills both of these requirements, and in

addition, generates no interference with any processor’s use of its cache.

Furthermore, where synchronization does not involve one process waiting for another (as
it does in a producer/consumer relationship), I envision fast synchronization operations
based on busy wait, in which waiting is rarely necessary. I imagine the processes in the
systern communicating rapidly using fast operations whose target atoms are each con-
tained entirely on a single memory block. The efficient locking scheme introduced here
will enable a cache to fetch an atom for write privilege and lock the block as it arrives
and the first operand is read. The processor will then execute a fast operation on the
atom and unlock it with the final write to the block. The locking, the operation, and the
unlocking are fast and efficient. In particular, the locking and unlocking incur no pro-
cessor time or bus traffic in this case.

In short, my vision for high-speed synchronization is that it may prove strategic for
hardware to implement sleep-wait queues, thereby realizing high-speed sleep wait with
minimal bus traffic and processor time. But if this idea does not prove itself, I look to
highly-efficient busy wait, which incurs no unnecessary bus accesses and allows a
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processor to work while waiting. Finally, I envision fast synchronization operations on
small atoms, where locking and unlocking incur no processor time or bus traffic at all.

D.2. Best of Both Worlds

We have seen three examples of the ability of broadcast to synchronize or coordinate a
group of devices at high speed.

e Synchronize caches — read/write sharing of data

e Synchronize processors — notification of lock release in busy waiting

¢ Synchronize processors — preemption of process by higher priority process

Broadcast is possible with both parallel switch and single-bus; however it is clearly more
expensive with a parallel switch, requiring n buses.

Following the innovative idea of Professor Al Despain, in Project Aquarius at Berkeley
we propose to incorporate into the same system the best of both worlds — that of the
parallel switch and that of the bus. (Dobry, Despain, Patt 1985) The parallel switch
allows many processors to access main memory concurrently, while the bus provides
high-speed synchromnization operations at reasonable cost. In particular, we recall that
the hardware needs to serialize conflicting access requests only for hard atoms, since the
software serializes access to soft atoms. Therefore, we propose an architecture having
two switch-memory systems: one system for hard atoms and software synchronization
structures, using a bus; and one system for all other objects, using a parallel
switch.(Figures 27,28) '

e Synchronization system — bus

o Hard atoms: counters, locks, sleep/priority queues, and such

O Software  synchronization  structures: reader/writer  synchronization
descriptor/queues, and such

¢ Data system — parallel switch
O Instructions
o Unshared data
0 Soft atoms (other than synchronization structures): shared buffers, and such

-

The major activity of the synchronization system will be to provide high-speed syn-
chronization among the processors, and among processes running on the same processor.
The operations in the synchronization system will include fast operations on small, hard
atoms, as well as more complex operations on structures such as reader/writer
descriptors/queues. These operations will use the lock state in the caches, if there are
caches, or else will use s single lock register, to implement busy-wait locking on the
atoms. Efficient waiting using a busy-wait register will also be employed. In addition,
the synchronization system will implement sleep and service-request priority queues. If
the performance benefit of the hardware priority queues appears warranted, they will be
implemented in VLSI to provide fast queuing operations and to eliminate busy wait.




It is not yet clear if caches will pay off since most, if not all, operations in the synchroni-
zation system will be read-modify-writes on high-contention atoms. In this case, the hit
rate on reads will be close to zero, but it will be close to one for writes, and nearly all
blocks in a cache will be be dirty. Therefore, the purpose of the caches, as opposed to
faster processor-registers, would be to reduce the number of writes on the bus. This
would occur if a cache never had to purge a (dirty) block when fetching a2 new one —
because the block that was previously in the target frame had already been fetched by
another cache. So if no purging is necessary, the caches would reduce the data
read/write traffic on the synchronization system bus by half by eliminating the writes, in
the read-modify-write operations. The rest of the bus traffic would consist of unsuccess-
ful busy-wait tries and hardware queue accesses.

In contrast, the data system will contain most soft atoms, unshared writable data, and
read-only data. The major activity of this system will be to access and to share large
data structures — sharing that will be synchronized in the synchronization system — as
well to access unshared and read-only data. This system will also maintain the state of
the processes in their process control blocks, since a process state will be too large to
manage in the synchronization system, which will be devoted to relatively fast operations
on small variables and structures. The cache synchronization system, here, will be a
non-broadcast system, as described in Appendix 4.18

D.3. Evaluation of Features

The next step is to evaluate the proposed architectural features for fast synchronization
in the context of a particular system of interest in order to determine how beneficial each
feature is in that system — to determine if each feature is worth its cost in that system.
A stochastic model informed by simulation will enable this evaluation to be made. In
Project Aquarius, our focus will be on evaluating these features with respect to the mul-
tiprocessor architecture shown in Figure 28, which is being designed as a high perfor-
mance system to execute Prolog. I am currently formulating a stochastic model to use in
making the evaluation.

18 A precedent for the split-level, tightly-coupled Aquarius architecture is the loosely-coupled, dataflow
architecture of Srini (1980; 1985). The latter has two communication systems, one for urgent, short com-
munications, and another for normal-priority and long communications.
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Appendix 1

High-Speed Memory Transfer

As stated in Section A.2, Professor John Ousterhout has pointed out that computer
architects can help operating system (OS) designers greatly by devising a fast data
transfer operation, allowing fast I/O and fast memory-to-memory transfer.

My solutions to this problem are two.

® Direct Memory Transfer (DMT): Direct memory-to-memory transfer is managed by
the memory units themselves. Transfer occurs at the maximum possible speed — the
clock rate.

® Cache-Mediated Transfer (CMT): A processor cache mediates a memory-to-memory
transfer using two DMT transfers. Hence the overall speed is half that of DMT, but
entails much simpler hardware and software.

Let us look at each in turn.

Direct Memory Transfer (DMT). Three principles will enable architects to realize
the full speed potential of memory and switch transfer.

® Interleave: Memory access must be pipelined using interleaving. The switch must
support it, allowing split address and data phases for reading.

¢ Direct transfer: The two memory units involved in a transfer (main memory units,
I/O processor buffers, or caches) must manage the transfers themselves so that the
data moves directly from one unit to the other, crossing only the switch and neces-
sary drivers and latches. No third processor should get in the way.

o Switch synchronization: The switch allows data transfers to run as fast as the clock,
no handshaking necessary.

In short, one memory unit directly transfers to another as fast as the clock, hence an

appropriate name is direct memory transfer (DMT). This is similar to direct memory

access (DMA), but in the present case a main memory unit (not just a cache or I/O pro-

cessor) has a control unit that allows it to initiate a transfer.

The reason that a main memory unit needs this power is so that high speed transfers can
be made from one part of main memory to another. But in order for this to be possible,
main memory must be split into at least two units, each interleaved and controlled as
stated. This requires the understanding of the OS. The OS needs to be aware of the
address bounds of the memory units so that it can plan high-speed transfers from one
unit to another. Under a virtual memory system, this can be implemented by reserving
several pages in each unit for buffers to be used for this purpose.

It may not be convenient for the OS to arrange this, and portability of the high-speed

transfer may require some work. Consequently, let us explore a second memory-to-
memory transfer method that is about half the speed of the foregoing scheme, but avoids
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the bardware and software complications noted.

Cache-Mediated Transfer (CMT). As mentioned in Section B.1.1, a CPU cache can
be used to implement fast memory-to-memory transfer. It simply needs to understand a
CPU command to fetch a block from one address and write it to another. The cache
will not bother storing the block in its data cells; it simply reads the block into its bys
assembly register and then writes it from there. {Smith (1982) and Borriello (1985) illus-
trate the internal components of a cache, for the interested reader.)

In order to synchronize with the other caches, the cache should fetch from the first
address with read privilege, then get write privilege to the second address (invalidating it
in its own directory, if present) as it finally writes to the second address, as in an input
operation (Section B.2.2).

The speed of cache-mediated transfer is about half that of direct-memory transfer
because two DMT transfers are necessary per block. In addition, the CPU must com-
mand the cache to traasfer block by block, unless the cache is given the intelligence to
transfer all blocks within a particular address range.

The advantage of CMT, though, is much simpler hardware and OS software. The cache
is already in place; its control just needs to be a little smarter. And the OS will not need
to be concerned about the bounds of memory units.

Intra-Memory-Unit Transfer. Finally, one could give a memory unit the capability
to do what the cache does, thereby freeing the switch. A memory unit could read out a
block into its data registers, then write the block back to itself. The target addresses
should already be available in its registers.
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Appendix 2
Processor Requests, Cache Responses, Bus Commands

Details of processor requests, and the resulting cache responses and bus commands, are

given in the table that follows. In order to avoid cluttering the table, the following

events are omitted.

® Hit: If a cache has a block that is requested for read privilege via the bus, the cache
indicates this by signaling hit on the bus, so that the requester will not assume write
privilege if there is no source cache.

e Source: If a source cache is present, it provides the block, along with its
clean/dirty/lock status, in response to a fetch request. The provision of the status
indicates the source's presence to main memory, which must then refrain from driv-
ing the bus. Also, the cache that fetches the block becomes its new source.

e (Clean/Dirty: When a processor writes a block, the block becomes dirty.

Lock Waiter / Busy Wait: When a locked block is requested by another cache, the
status becomes lock-waiter in the cache holding the block, and the requester’s busy-
wait register is loaded.

Several examples will be considered now to show how the table is read. Keep in mind
that the figures will not be referred to here, but they do elucidate many of the details.

Suppose that a processor makes a request to read a word from its cache. The first four
lines of the table show the sequences of cache responses that may be generated by this
processor request. The four major columns present the four major cases: the current
status of the block in the processor’s cache is invalid (or absent), read, write, or lock.
Suppose that the status is invalid or absent (a miss). Then the first line indicates that
the processor’s cache presents a request to the bus to gain read (R) privilege to the block
and to fetch (F) the block. The next three lines present four minor columns showing the
four alternatives: the status of the block in another cache is invalid (or absent), read,
write, or lock (I/R/W/L). I the status is invalid or read, it remains invalid or read; if
write, it changes to read; and if lock, it stays lock (I/R/R/L). The resulting status in the
requester cache is, respectively, write (if invalid in all other caches), read, read, and
invalid (or absent) (W/R/R/I). The cache, in turn, provides the target word to its pro-
cessor, or garbage if the block was locked. (If hint read is implemented, the cache will
have the actual word for its processor.)

To consider another example, suppose the processor requests its cache to lock a block,
and the status of the block in the requester cache is read. Then the cache presents a
request to the bus to gain write (W) privilege to the block, but does not present a request
to fetch the block (no F), since it already has an up-to-date copy of it. If the block is
present in another cache, it can have only read status, since it has read status in the
requester cache. The status changes to invalid in that cache, and it changes to lock in
the requester cache. Finally, the requester cache provides the target word to its proces-
sor.
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Table. Detalls on Processor Requests, Cache Responses, and Bus Commands®

Bus Commands and Cache Responses

Initial Status in Requester Cache

Processor Request to Sequence of Cache Invalid (or Absent) Read Write Lock
Cache Actions
Read Requester cache to bus R,F — — —_
Other cache initial statue I R w L! - — —_
Other cache final status 1 R R L — — —
Requester cache final status | W2 |R R 1 R w L
Write / Reguester cache to bus W, F w -—
Write-without-Fetch® Other cache initial status I R w LY R — —_
Other cache final etatus I I 1 L I — —_
Requester cache final statue | W |{W | W I w w L
Lock Requester cache to bus W, F W —_ -
Other cache initial status I R w L R - —_
Other cache final status I I I L I —_ -
Requester cache final statue | L |L L I L L LS
Unlock Requester cache to bus U, s® — — U, st
Requester cache final status Aorl? R* w7 w
1/0 Reld/Write. Request to bus W, F/S
Any cache initial statue 1 R w L®
Any cache final status I I I L
Memory Mode® Request to bus _ MM, F/S .
Read/Write Any cache instial status I R10 w10 10
Any cache final statue 1 R w L
Source purges dirty block
Reguester cache to bue - Purge, S Purge,S —
Other cache initial status - R _ —
Other cache final status - R,Src! - —_




0.

Abbreviations

Abbreviation

Table Notes

Meaning

NEF“ﬂ>|

l_‘nn
a

zC

Not applicable

Absent

Fetch the block

Invalid (or absent)

Lock

Memory mode read or write

Read privilege

Store the block (in memory)
Source of latest version of block

e Location of clean/dirty status
for the block

¢ When the block is requested by
another cache, the source provides
it and its current clean/dirty/lock
status

o When purging the block, the
source flushes it if dirty

Unlock

Write privilege

— 81 —

It is a bug to attempt to read a block that is
locked by another cache, unless hint read is
implemented.

Write privilege is assumed if the block is in-
valid (or absent) in all other caches; other-
wise read privilege is assumed.

On a hit (Read/Write/Lock status), write-
without-fetch is handied by the cache like a

_ normal write request. While on a miss

10.

11.

(Invalid/Absent), the block is not fetched,
hence the bus command is W, rather than
WF.

It is a bug to attempt to write a block that is
locked by another cache.

It is a bug to attempt to lock a block that is
already locked in your cache. This is becanse
process-switching interrupts should be dis-
abled when a busy-wait lock is locked, as ex-
plained in Section B.2.2, and a process should
not lock 3 block again before unlocking it.

A bus access is made only if the lock is ab-
sent (had been purged) or if the state is lock-
waiter. An operand may accompany (requir-

" ing the store), depending on the design.

It is a bug to attempt to unlock a block that
is not locked in your cache.

The requester cache is equivalent to the oth-
er caches for /O and memory mode com-
mands.

It is a bug for I/O to be requested on a
locked block.

If the object is non-cachable, such as an I/O
port, it is a bug for the address to be valid in
the cache.

The othér cache takes source responsibility
and clean/dirty the status for the block.






Appendix 3

Block-Invalidation Bus Traflic

General Concepts

Invalidation Write-Through: Large Upper Bounds
Invalidation Write-Through: Small Upper Bounds
Invalidation of Unshared Data

23R8

1. General Concepts

After enumerating the components of bus traffic, along with several models, we will
derive large upper bounds, and then smaller upper bounds, on the bus traffic of
Goodman's (1983) invalidation write-through (Section B.2.3, Feature 4). Then we will
briefly consider the bus traffic due to invalidating unshared data (Section B.2.3, Feature
5). Keep in mind that the purpose of this section is not to make highly accurate esti-
mates, but simply to derive reasonable upper bounds in order to get a rough feel for the
fraction of bus traffic generated by invalidation writes.

Bus Traffic Components. Under an update-by-block (write-back) cache policy, the
bus traffic consists of the following components, some of which may not be present in
particular systems. All except for the I/O transfers are generated by a processor’s cache.
The occasions for each are also indicated.

® Block feteh from memory. Occasions:
O Read miss (unshared vs. shared data)
o Write miss
O Prefetch
® Block fetch from another cache (faster than fetch from memory). Occasions:
8 Read miss (unshared vs. shared data)
o Write miss
8 Prefetch
® Block flush to memory. Occasions:
8 Miss
o Prefetch
8 Process switch or termination
® Block invalidation in other caches. Occasions:
0 Write hit — if cache does not have write privilege

0 Write miss — in addition to block fetch, Goodman requires an invalidation write-
‘through to memory

gl
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e I/O transfer. Occasions:
o Input
G Output

We will limit our attention to the following components, for simplicity, in deriving upper
bounds:

e Block fetch from memory
o Miss
® Block flush
o0 Miss
e Block invalidation in other caches
o Write hit
o Write miss
Since we are restricting attention to only part of the total non-invalidation traffic (a
denominator), the resulting values regarding cost will be upper bounds.

Models. We need to make basic assumptions about bus arbitration and memory struc-
ture. It seems to me that there are two reasonable models for bus arbitration and four
for memory structure.

® Bus arbitration
o Word transfer: Every word transfer requires arbitration.

O Multiword transfer: The master can hold the bus through an arbitrarily long
multiword transfer.

® Memory structure
0 1. Non-interleave; no address/data registers: Memory has no address or data

registers for servicing a read or write, so the master must hold and drive the
address/data bus throughout the read or write for the full memory latency.

o 2. (Non-interleave; address/data registers: Memory has address/data registers,
so a write costs only one bus cycle. If, in addition, the bus allows split
address/data phases for a read, a read costs only two bus cycles — one for the
address and one for the data.) A

o 3. Erternal interleave; (address/data registers): Memory is externally inter-
leaved (each module is individually accessible to the processor), so it has
address/data registers. A write costs one bus cycle, while a read costs two.

C 4. Internal interleave; (address/data registers): Memory is internally interleaved
(a module is not individually accessible to the processor), so on a block read, the
address is distributed internally to all modules in parallel, taking less than one bus
cycle per module.

Under the second memory model, if the bus does not allow split address/data phases for
a read, this model simply reduces the cost of the invalidation write, as compared to the
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first, so the first gives us an upper bound for the two models. If, on the other hand, the
bus does allow split address/data phases, the second model becomes equivalent to the
external interleave model in terms of bus traffic. For simplicity, then, let us ignore the
second model. :

Combining the two bus-arbitration models and the three resulting memory-structure
models gives us three models of interest.

e Low performance: arb. every word, non-interleave, no adr/data registers

® \edium performance: arb. multiword, non-interleave, no adr/data registers

e High performance: arb. multiword, =xternal interleave, (adr/data registers)

e Very high performance: arb. multiword, internal interleave, (adr/data registers)

2. Invalidation Write-Through: Large Upper Bounds

This topic emerges from Section B.2.3, Feature 4. Let use first consider just the block
fetch and the invalidation write on a write miss, and in doing so we will derive the
large upper bound 1/n.,.4, 00 Co08t;, 041, Where n,,.4 is the number of bus words in a
memory block. The invalidation on a write hit can be ignored in deriving an upper
bound, since any scheme requires a bus access in this case, whereas only Goodman's
scheme requires an extra access to invalidate on a write miss.

Low/Med/High Performance Models. In this context, let us define the following
variables.

Variable  Number of ...

Nwords Bus data-words in a block

Variable  Number of bus cycles required for ...

N, Bus arbitration (n,.; = 0 if arb. is overlapped with prior transfer)
(Only the successful arbitration is counted. An unsuccessful arbitration is
counted in the cost of the processor that won it.)

NYge Memory read latency for internal interleave model
Npead Memory read (n,.,¢4 = 2 under external interleave model)
Noyrite Memory write (R e < 7Myegd; Murite = 1 under external interleave model)

N fetch Fetching a block

The fractional increase in bus traffic due to the invalidation write is the ratio of the total
traffic in a system with that write to the total trafic in a system without that write,
minus one. Since we are currently limiting our attention to the block fetch and the
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invalidation write on a write miss, this increase, Cost;pyqiyy, is as follows.’

General:
. n + Ninval.
Ratwtra[ﬁc — Jeteh invel.wr > 1
R fetch
. Ninval.
Costinpatwr = HRatiog,me — 1 = _auewr

R fetch

We see that the cost fraction is just the ratio of the invalidation write traffic, to the

traffic in a system without those writes.

The subsequent equations indicate the value of Cost;p,q1,r under each model. The cost
under the high performance (external interleave) model is just the cost under the
medium performance model with n,,,y = 2, Ny = 1; while the internal interleave

model reduces to the external interleave model if njy; = ny0pd,-

Low perf. (Ryrite < Nreadr Rurite = Npead):

( Ngep + Neead ) Nyords + ( Narp + Nurite )

COStl = 1
oper/ Tnarb + Nread ) Royords
— Ngep + Nurite

rnarb + Neead } Nwords
Medium perf. (nwn'te S Rreads Nurite ~ nread):

n +n n +n,, .- | —

COStmed.perf —_ ( ard read *words ) write 1= write
Narp + Nregd Mwords Ngep + Nread Mwords
High perf. — external interleave (n ;. = 1, fiyeqq = 2)
1

Costhi.perf = COStmed.perf | { Nroad ™= 2, Boise = 1) Tlars T ZNiwords

Very high perf. — internal interleave (nypite = Mread = 1, Riat < Ruords):

Noyrite 1
Ngep + Nygp + NpeadPuwords Ngpp + Nige + Nuworde

COStv.hi.perf

(3)

(4)

(5)

(6)



Now consider two observations, assuming Rymite ™ Rread 2 2, Ry < Nyords, Where
relevant.

Order:
Cos‘hi.perf S Cos‘v.hi.perf S Cos‘med.perf S Co“lo.perf S 1/ Royords

Overlapped arb. (n,,, = 0):
2C'o"tlzi.per'f ~ Cos‘med.perf ~ Costl